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Overview
LiveCode now incorporates facilities for deploying to iOS. These facilities include the ability to  
build iOS applications that run in a variety of simulator versions as well as on iPhone, iPod Touch 
and iPad devices.

In addition to supporting many of the desktop engine's features, the iOS engine hooks into many 
iOS-specific features. Please see the iOS Specific Features section for more details.

For information on what parts of the Desktop feature set are currently implemented when deploying 
to iOS, please see the What Works section.

Note: If you have not purchased the iOS deployment pack, you can still try out iOS deployment  
features, but any built apps will have a forced banner for 5 seconds on startup, and will quit after  
one minute.

Note: iOS deployment is only supported on Macs running the latest versions of Snow Leopard and  
requires installation of an appropriate iOS SDK.
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Getting Started

Choosing an SDK

Before you can use iOS deployment, you need to install the appropriate iOS SDKs available from 
Apple.

In order to get the iPhone SDK, you need to be 'registered iPhone developer'. You can register for 
this and download the SDK by visiting:

http://developer.apple.com/ios

LiveCode recommends the following set up:

Platform Xcode SDK Simulators Included
Snow Leopard 4.2 5.0 5.0, 4.3

Lion & Mountain Lion 4.6
4.4

6.1
5.1

6.1, 6.0, 5.1, 5.0
5.1, 5.0

Make sure you have at least one SDK installed, otherwise you will not be able to use the iOS 
deployment feature.

Note: As a registered iOS developer you will be able to develop and run applications in the iPhone  
Simulator only. To build applications that can be run on an actual device you will need to enroll in  
the iOS Developer Programme.

Snow Leopard

When running on Snow Leopard, LiveCode uses the iOS 5.0 SDK to produce device builds.  This is 
available as part of Xcode 4.2.

The 4.3 and 5.0 simulators are supported on Snow Leopard.

Lion & Mountain Lion

When building for Arm v7 devices, LiveCode uses the iOS 6.1 SDK, available as part of Xcode 4.6. 
When building for Arm v6 devices, LiveCode uses the iOS 5.1 SDK, available as part of Xcode 4.4. 
If you wish to produce universal device builds (including both Arm v6 and Arm v7 instructions) 
you must have the iOS 5.1 and iOS 6.1 SDKs installed.

The 5.0, 5.1, 6.0 and 6.1 simulators are supported on Lion & Mountain Lion.

Configuring LiveCode

After you have installed an iOS SDK, it is necessary to tell LiveCode where to find it (or them, if 
you have installed more than one).
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To configure the paths to your installed SDKs, use the Mobile Support panel in Preferences.

Use this pane to choose the correct SDK paths by using the 'Add entry' button. You should choose 
the folder you selected when installing the SDK (for Xcode versions 4.2 and earlier) or the Xcode 
app bundle (for Xcode version 4.3 and later).

When you have successively chosen your SDK(s), the list of simulators and SDKs that you will 
have available will be updated.

Note: On startup if SDKs have not been previously configured, LiveCode will check to see if there is  
a recognised SDK at /Developer and /Applications.

Configuring an iOS standalone

To configure a stack for iOS, you use the new iOS deployment pane in the Standalone Application  
Settings dialog, available from the File menu:
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This pane allows you to set the iOS-specific options for your application. You can also add files you 
wish to be included in the bundle using the Copy Files pane, and set the (bundle) name of your 
application on the General pane.

To make a stack build for iOS, simply check the Build for iOS button and configure any options that 
you wish.

Note: Making a stack build for iOS disables building for any other platform, however this is only  
true of the standalone's mainstack. If you wish to share code and resources among platforms,  
simply factor your application into multiple stacks, using a different mainstack for iOS and desktop  
targets.

Note: The Inclusions, Copy Referenced Files, Bug Reports and Stacks features are not available  
when building for iOS. If you wish to include multiple stackfiles in your application, use the Copy 
Files feature instead.

Testing in the iOS simulator

Once you have a stack configured for iOS, you can run it in the iOS Simulator by using the Test 
button on the menubar:

8



Revision 97 – 2013-05-29

This button will be enabled for any stack that has been configured for iOS deployment, and clicking 
it will launch the stack in the simulator, terminating a running simulation if any.

You can also access the Test action from the Development menu. Additionally this is where you can 
configure which target iOS simulator to use:

Here you can choose which simulated device to use for iOS testing. Any setting you choose here 
will take effect the next time you use the Test button or menu-item.

Note: If the Test button or menu-item remains disabled, even if you have configured a stack for iOS  
deployment, it probably means you haven't configured your SDKs correctly. In this case, check that  
there are available simulators in the Mobile Support pane of Preferences.

A first project

Once you have installed an iOS SDK and configured LiveCode for it, it is easy to run a simple 
project:

1. Create a new main stack via File > New Mainstack.

2. Rename your new main stack to Hello World

3. Drag and drop a button onto the new main stack, and call it Click Me

4. Edit the Click Me button script and enter the following:

on mouseUp
 answer "Hello World!" with "ok"
end mouseUp

5. Save the Hello World stack.

6. Bring up the Standalone Application Settings dialog from the File menu, switch to the iOS 
pane and make sure 'Build for iOS' is checked.

7. Make sure your test stack is active and then click Test on the menubar.

8. Click the Click Me button in the simulator to see your script in action!

You can try the stack out in different versions of the simulator, simply by selecting the version you 
want from the Development menu.

Building for a real device

Before you can begin testing your application on a real device, you will need to have several things 
in place:
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1. Enrolment in the iPhone Developer Programme: this is required so that you can generate the 
necessary certificates and profiles.

2. A iPhone Developer Certificate: this is installed on your development machine and is used 
to digitally sign the application you wish to put onto an iPhoneOS device. Follow the 
instructions on the Certificates tab of the iPhone Developer Program Portal.

3. Registration of at least one iPhoneOS device in the program portal. You can add devices 
using the Devices tab of the iPhone Developer Program Portal.

4. An App ID for your application. You can create App IDs using the App IDs tab of the 
iPhone Developer Program Portal. (Note that at this stage it isn't necessary for you to have  
a separate App ID for every app – you can use a single id for all your apps for  
testing/development purposes.)

5. A provisioning profile tying together your test device's id, you app id and your certificate. 
These can be created using the Provisioning tab of iPhone Developer Program Portal.

Once you have all these things ready, you should find that the 'Profile' drop-down menu in the iOS 
pane of the Standalone Settings dialog is populated with any provisioning profiles you have 
installed.

With a suitable profile chosen, you can simply use the Save as Standalone Application... item in the 
File menu to build an iOS app bundle in the same was as you would build a standalone for any 
other platform.

The next thing to do is to install the bundle on your test device. To do this, start up Xcode, and 
choose Window > Organizer. This will bring an interface allowing you to manage the applications, 
devices and profiles you are using for development.

Next, make sure you have your test device connected to your machine and choose it from the left 
hand list. If you haven't used the device for development before, you will be prompted to do so, and 
you'll then be presented with a list of installed applications.

To get your newly prepared application on the device, simply drag the application bundle from the 
desktop into the Applications list – opting to install the appropriate provisioning profile if it has not 
been previously installed on the device.

Finally, navigate to the application on your device, and start it up!
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Configuring an iOS Application

Setting plist options

All iOS applications have a plist that is built into the application bundle which controls many 
aspects of the applications requirements and functionality. To set the plist up, you simply use the 
options presented in the Standalone Builder's iOS pane, these will be used to construct a suitable 
plist automatically:
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Here the numbered items are as follows:

1. The devices supported by the application, iOS uses this to determine if an application should 
launch on iPod/iPhones and whether it should run in iPod/iPhone emulation mode on iPads 
(UIDeviceFamily).

2. The minimum iOS version required by the application (MinimumOSVersion)

3. The instruction set to build for.  Universal will build for both Arm v6 and Arm v7 devices 
(but will subsequently produce a larger app).  Arm v6 builds will run on both Arm v6 and 
Arm v7 devices.  Arm v7 builds will only run on Arm v7 devices.

4. The string to display as the label of the application on the SpringBoard 
(CFBundleDisplayName).

5. The bundle identifier to use for the application, in conjunction with the App Id present in a 
provisioning profile, this uniquely identifies an application (CFBundleId).

6. The version of the application (CFBundleVersion).

7. The provisioning profile to use when building the application to run on a device.

8. The extensions to include in the application:

i. Choose 'revZip' if you are using any of the revZip commands and functions.

ii. Choose 'revXML' if you are using any of the revXML commands and functions.

iii. Choose 'SQLite' if you are using revDB along with the dbSQLite database driver.

iv. Choose 'MySQL' if you are using revDB along with the dbMySQL database driver.

v. Choose 'PDF Printing' if you are using 'open printing to PDF'.

9. The icon to display on the iPhone and iPod SpringBoard (CFBundleIconFile and 
CFBundleIconFiles).  This icon should be 57x57 pixels.

10. The icon to display on the Hi-Res iPhone and Hi-Res iPod SpringBoard (CFBundleIconFile 
and CFBundleIconFiles). This icon should be 114x114 pixels.

11. The icon to display on the iPad SpringBoard (CFBundleIconFile and CFBundleIconFiles). 
This icon should be 72x72 pixels.

12. Determines whether the SpringBoard icon already has a tint and gloss applied. 
(UIPrerenderedIcon).

13. The iPhone and iPod image to use as the launch image (commercial), or the image to 
incorporate as the splash image (personal and educational), see Adding a default launch  
image or Adding a splash image for more details.  This image should be 320x480 pixels and 
rotated to the initial iPhone orientation setting.

14. The Hi-Res iPhone and Hi-Res iPod image to use as the launch image (commercial), or the 
image to incorporate as the splash image (personal and educational), see Adding a default 
launch image or Adding a splash image for more details. This image should be 640x960 
pixels and rotated to the initial iPhone orientation setting.

15. The portrait iPad image to use as the launch image (commercial), or the image to 
incorporate as the splash image (personal and educational), see Adding a default launch 
image or Adding a splash image for more details. This image should be 768x1024 pixels and 
rotated to the initial iPhone orientation setting.
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16. The landscape iPad image to use as the launch image (commercial), or the image to 
incorporate as the splash image (personal and educational), see Adding a default launch 
image or Adding a splash image for more details. This image should be 1024x768 pixels and 
rotated to the initial iPhone orientation setting.

17. The initial iPhone and iPod orientation to start the application up in.

18. The set of supported iPad initial orientations.  This is used to determine which splash screen 
will be displayed.

19. The name of the URL scheme used to reference your application uniquely.

20. Determines whether the application requires a persistent WiFi connection 
(UIRequiresPersistentWiFi).

21. Determines whether the 'Shared Files' feature of iTunes is enabled for this application 
(UIFileSharingEnabled).

22. Determines whether you application can receive push notifications.

23. These options determine what facilities the application requires or prohibits on the device in 
order to be launched (UIRequiredDeviceCapabilities).

24. The initial visibility state of the status bar (UIStatusBarHidden).

25. The initial status bar style (UIStatusBarStyle).

More details of the plist options can be found in the iOS Reference Document.

Adding a splash image (personal and educational)

If you are using a personal or educational license, then you are restricted in what can be displayed 
as the launch image. In this case you should provide a (square) PNG image that will be placed 
inside a LiveCode branded banner (see below).

The plugin automatically generates a collection of launch images using this image depending on the  
target device settings you have specified in the plist.

We recommend providing an image of 600x600 for the splash – this will give good results when 
resampled at the various resolutions and sizes required by the different iOS devices.

Note: With these license types, the generated launch image will remain on screen for 5 seconds  
before being dismissed.
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Adding a default launch image (trial)

If you are evaluating the iOS deployment feature using a trial license, then you cannot configure a 
splash or launch image. Instead, all such applications will be built with the following launch image:

This image will remain on screen for 5 seconds before the application launches, and the application 
will quit after one minute.

Adding custom fonts

In iOS 3.2 and later, the ability was introduced to allow applications to bundle custom fonts which 
then become available to the app (and only that app) while it is running.

To take advantage of this feature, all you need to do is reference the files of any fonts you wish to 
include in the Copy Files pane. These files can either be a direct file reference, or contained in one 
of the folder references. The Standalone Builder will treat any files that end with the extension ttf or 
ttc as font files to use in this way.

Any fonts included in this way will appear in the fontNames and can be used in the same way as 
any other font on the system.

Important: Make sure you have an appropriate license for the fonts you choose to bundle with your  
app like you would any other media such as sounds, images and videos.

Adding custom externals

For full details of the iOS Externals interface click the following link:

http://www.runrev.com/developers/documentation/externals-sdk/

Copy files restrictions

It appears that (at least) the simulator does not like specific folder names being present at top-level  
inside the app-bundle. In particular, attempting to copy files in that result in a top-level folder called  
'resources' (any case) will cause simulation to fail.

To help identify these cases, the Copy Files pane will warn you when you add files that could cause 
this issue. Additionally, when an app is built (either for simulation or for deployment) an 
appropriate error message will be displayed and the operation will cease.
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Note: At this stage we do not know if this problem is limited to 'resources' or whether there are  
others too. If you find you get an 'unknown error' when trying to simulate, try renaming some of  
your top-level 'copy files' folders and see if it goes away. If it does please let us know what folder  
names caused the problem so we can add them to our checks.
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Deployment Features

Standalone builder messages

When building a mobile application for either a device (through Save as standalone) or for 
simulation (by clicking Simulate), messages are sent to the application's main-stack to notify it 
before building starts, and after build has finished.

Before the application is built the following (optional) message is sent:

savingMobileStandalone targetType, appBundle

Where targetType is either "simulator" or "device", depending on the type of build; and appBundle 
is the path of the application bundle being built.

After the application is built (but before being launched in the simulator), the following (optional)  
message is sent:

mobileStandaloneSaved targetType, appBundle

Where the parameters are the same as before except if the build failed, in which case appBundle 
will be empty.

Note that if you make changes to the stack in savingMobileStandalone that you want to appear in 
the built application, you must save the stack before returning from the handler. The mobile 
standalone builder uses the stackfile as it is on disk after return from the message to build the app.

Fast simulator deployment

Building for the iOS simulator is now substantially faster for large projects.

Any resources listed in Copy Files are no longer copied into the app-bundle. Instead, the iOS 
simulator engine is able to automatically and transparently use any assets specified directly from 
their original locations on the host machine.

In particular, from the point of view of the simulated app, any included files and folders appear as if 
they are, in fact, part of the application bundle – just as they would do if they had been explicitly 
copied.

Note: One side-effect of this is that changes to any assets while an app is running in the simulator  
may have an impact on it; just as it would in the IDE.

Note: This feature is currently only supported when running in the simulators for iOS 4.0 and later.  
When running in the 3.2 or 3.1.3 simulators, the old (slow) method of copying files will still used.
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General Engine Features

Engine version

The iOS engine version is in step with desktop engine version and build number. A substantial 
subset of the the desktop feature set is available, together with a library of mobile specific 
functionality.

What doesn't work

The following features have no effect:

• clipboard related syntax and functionality (planned for a future release)

• printing syntax and functionality (planned for a future release)

• setting the mouseLoc (no support on mobile devices)

• socket syntax and functionality (planned for a future release)

• dbPostgreSQL, dbODBC and custom externals (planned for a future release)

• industrial strength encryption and public key cryptography (planned for a future release)

• dbMysql SSL support (planned for a future release)

• paint tools (planned for a future release)

• audioclips/videoclips/player functionality (use the 'play' and 'play video' syntax described 
later)

• revBrowser (use native browser control instead)

• revFont (use 'custom font inclusion' mechanism instead)

• drag-drop related syntax and functionality (no support on mobile devices)

• backdrop related syntax and functionality (no support on mobile devices)

• cursor related syntax and functionality (no support on mobile devices)

• revSpeak (no support on iOS)

What does work

The following things do work as expected:

• rendering of controls with non-system themes (default is Motif theme)

• date and time handling

• gradients, graphic effects and blending

• any non-platform, non-system dependent syntax (maths functions, string processing 
functions, behaviors etc.)

• revZip, revXML, dbSqlite and dbMysql
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Debugging

At present the options available for debugging applications running on target devices is limited. 
Obviously, scripts will work in a similar fashion between Desktop and Mobile so this helps.

There is, however, a simple means of logging from an emulated target device. The LiveCode 
command form:

put string

Will write the string out to the standard error stream. These messages will be visible in Console.app 
when running in the simulator, and in the Console tab of the Xcode Organizer for a given target 
device while it is connected to the host computer. 

Windowing and Stacks

The mobile engine uses a very simple model for window management: only one stack can be 
displayed at a time.

The stack that is displayed is the most recent one that has been targeted with the go command.

The currently active stack will be the target for all mouse and keyboard input, as well as be in 
receipt of a resizeStack message should the orientation or layout of the screen change.

The modal command can also still be used, and will cause the calling handler to block until the 
modal'ed stack is closed as with the normal engine. Note, however, that performing a further go 
stack from a modal'ed stack will cause the new stack to layer above the modal stack – this will 
likely cause many headaches, so it is probably best to avoid this case!

At this time menus and other related popups will not work correctly, as these are implemented in the 
engine (essentially) as a specialized form of go stack they will cause the current stack to be overlaid 
completely, with various undesirable side-effects.

Note: The 'go in window' form of the 'go stack' command will not work correctly in the iOS and  
must not be used. Since there is only one stack/window displayed at once on this platform, a generic  
'go stack' should be used instead.

System Dialogs – answer and ask

The iOS engine supports a restricted version of the answer and ask commands – both using the 
system-provided UIAlertView class.

The answer command can be used in this form:

answer message [ with button and … ] [ titled title ]

This will use the iPhone standard alert popup with the given buttons and title. The last button 
specified will be marked as the default button.

The ask command can be used in this form:

ask [ question  | password ] prompt [ with initialAnswer | with hint hint ] [ titled title ]

If neither question nor password is specified, question is assumed. The value entered by the user 
will be retured in it. If the user cancelled the dialog, the result will contain cancel.

The hint can be used to specify background text that will disappear as soon as the user enters data. 
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The hint will never be returned.

The text field present in the ask dialog will use the current keyboard type as set by the 
iphoneSetKeyboardType command.

Note: You cannot nest calls to ask/answer on iOS. If you attempt to open an ask or answer dialog  
while one is showing, the command will return immediately as if the dialog had been cancelled.

Non-file URL access

The iOS engine has support for fetching urls, posting to urls and downloading urls in the 
background. Note that the iOS engine does not support libUrl, and as such there are some 
differences between url handling compared to the desktop.

The iOS engine supports the following non-file URL access methods:

• GET for http, https and ftp URLs

• POST for http and https URLs

• PUT for ftp URLs

Note: When using URLs for these protocols be aware that the iOS system functions used to provide  
them are much stricter with regards the format of URLs – they must be of the appropriate form as  
specified by the RFC standards. In particular, in FTP urls, be careful to ensure you urlEncode any  
username and password fields appropriately (libUrl will allow characters such as '@' in the  
username portion and still work – iOS will not be so forgiving).

To fetch the google home page you can do:

put url ("http://www.google.com") into tGooglePage

To post data to a website, you can use:

post tData to url tMyUrl

To upload a file to an FTP server you can use:

put tData into url "ftp://ftp.myftpserver.com"

To download a url in the background, you can use:

load url tMyUrl with message "myUrlDownloadFinished"

Note that, the callback message received after a load url will be of the form:

myUrlDownloadFinished url, status, data

Here, data is the actual content of the url that was fetched (assuming an error didn't occur).

Progress updates on ongoing url requests are communicated via the urlProgress message. This 
message is periodically sent to the object whose script initiated the operation. It can have the form:

urlProgress url, "contacted"

urlProgress url, "requested"

urlProgress url, "loading", bytesReceived , [ bytesTotal ]

urlProgress url, "uploading", bytesReceived, [ bytesTotal ]

urlProgress url, "downloaded"
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urlProgress url, "uploaded"

urlProgress url, "error", errorMessage

Note that pBytesTotal will be empty if the web server does not send the total data size.

You can also download a url direct to a file – this is particularly useful when downloading large 
files since the normal 'url' chunk downloads into memory. To do this use:

libUrlDownloadToFile url, filename

Unlike the libUrl command of the same name, this command will block until the download is 
complete, and will notify progress through the urlProgress message as described above.

When using GET and POST with http(s) URLs you can use the httpHeaders global property to 
configure the headers to send. This works the same as the desktop engine, any specified headers 
overriding those of the same key that would normally be sent, and any new keys being appended.

Note: The order of the arguments passed to urlProgress changed in revision 18, to make them  
consistent with other callbacks, and also with the libUrl status callback.

Out-of-bounds group scrolling

Two properties unboundedHScroll and unboundedVScroll now enable you to configure whether 
scroll values for a group can be set to values outside of the actual content bounds. This makes it 
much easier to support the standard iOS bouncing features in scrollers.

This change has been made to both the iOS engine, and the main desktop engine. See the main 
release notes for more details.

Externals

The revZip, revXML, dbSqlite (via revDB) and dbMysql (via revDB) externals can now be used on 
iOS.

To include these components, simply check the appropriate boxes on the iOS Standalone Settings 
Pane.

Snapshots

The iOS engine supports both the object and screen snapshot variants of the import and export 
snapshot commands.

To fetch a snapshot of an object use:

import snapshot from [ rectangle rect of ] object

export snapshot from [ rectangle rect of ] object

To fetch a snapshot of the screen use:

import snapshot from rectangle rect

export snapshot from rectangle rect

In the screen snapshot case, co-ords are given relative to the top-left of the screen and include the 
status bar.
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Note: There does not seem to be a way to render the status bar without using private features of the  
iOS API. Therefore, if your snapshot rectangle includes part of the screen where the status bar is, it  
will be clipped out.
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iOS-specific engine features
This version of the LiveCode iOS engine includes a wide-range of features specific to iOS devices. 
These are described in the following sections.

Multi-touch events

Touches can be tracked in an application by responding to the following messages:

• touchStart id

• touchMove id, x, y

• touchEnd id

• touchRelease id

The id parameter is a number which uniquely identifies a sequence of touch messages 
corresponding to an individual, physical touch action. All such sequences start with a touchStart 
message, have one or more touchMove messages and finish with either a touchEnd or a 
touchRelease message.

A touchRelease message is sent instead of a touchEnd message if the touch is cancelled due to an 
incoming event such as a phone-call.

No two touch sequences will have the same id, and it is possible to have multiple (interleaving) 
such sequences occurring at once. This allows handling of more than one physical touch at once 
and, for example, allows you to track two fingers moving on the iPhone's screen.

The sequence of touch messages is tied to the control in which the touch started, in much the same 
way mouse messages are tied to the object a mouse down starts in. The test used to determine what 
object a touch starts in is identical to that used to determine whether the pointer is inside a control.  
In particular, invisible and disabled controls will not considered viable candidates.

Mouse events

The engine will interpret the first touch sequence in any particular time period as mouse events in 
the obvious way: the start of a touch corresponding to pressing the primary mouse button, and the 
end of a touch corresponding to releasing the primary mouse button.

This means that all the standard LiveCode controls will respond in a similar way as they do in the 
desktop version – in particular, you will receive the standard mouse events and the mouseLoc will 
be kept updated appropriately.

Note that touch messages will still be sent, allowing you to choose how to handle input on a per-
control basis.

Motion events

An application can respond to any motion events generated by iPhoneOS by using the following 
messages:

• motionStart motion
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• motionEnd motion

• motionRelease motion

Here motion is the type of motion detected by the device. As of iPhoneOS 3.0, the only motion that 
is generated is "shake".

When the motion starts, the current card of the defaultStack will receive motionStart and when the 
motion ends it will receive motionEnd. In the same vein as the touch events, motionRelease is sent 
instead of motionEnd if an event occurs that interrupts the motion (such as a phone call).

Accelerometer support

Note that as of 5.5-dp-1, this syntax has been deprecated in favour of the new generic sensor syntax. 
See the section “Sensor tracking”.

You can enable or disable the iPhone's internal accelerometer by using:

iphoneEnableAccelerometer [ interval ]

iphoneDisableAccelerometer

Enabling the accelerometer will cause accelerationChanged events to be delivered to the current 
card of the defaultStack at the specified interval. The interval should be specified in seconds, and is  
the approximate time between delivery of messages. Note that the interval is constrained by 
hardware-specific minimums and maximums (which are left unspecified by Apple).

The accelerationChanged message takes four parameters (Note this has changed from a single  
parameter in 5.5-dp-1):

x,y,z,t

Here x, y and z are the acceleration along those axes relative to gravity. The t value is a relative  
measurement of how much time has passed – you can use the difference between the time values in 
two accelerationChanged events to give an indication of how much time passed between the 
samples.

File Attributes

Use the iphoneSetDoNotBackupFile command to set a flag specifying whether a file should be 
backed up by iOS, or not. 

iphoneSetDoNotBackupFile filename, [doNotBackup]

Here filename is the path to the file, and doNotBackUp is a boolean value.  Set to true if  you wish 
the file not to be backed up to cloud storage, false otherwise.

You can check the do not back up attribute of a file at any time using the function 
iphoneDoNotBackupFile.

iphoneDoNotBackupFile(filename)

Use the iphoneSetFileDataProtection command to set the data protection level of a file.

iphoneSetFileDataProtection filename, dataProtection

Here, dataProtection can be one of the following:  

• none - No protection
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• complete - The file is not accessible, for read or write, while the device is locked.    
• complete unless open - The file is fully protected when the device is locked, unless it was 

already open.
• complete until first user authentication - The file is fully protected until the user unlocks 

the device for this first time. 

To fetch the data protection attribute of a file, use the function iphoneFileDataProtection.

 iphoneFileDataProtection(filename)

The message protectedDataDidBecomeAvailable will be sent to the current card when the device 
is unlocked and protected data files are available again.  Handle the 
protectedDataDidBecomeAvailable message if you want to reopen connections to files that have 
been protected using the  iphoneFileDataProtection function when the device is unlocked.

Photo album and camera support

Taking or choosing photos

You can hook into iOS's native photo picker by using

iPhonePickPhoto source, [ maxwidth, [ maxheight ] ]

Here source is one of:

• library – the photo is taken from the device's photo library

• camera – a photo is taken using the device's default camera

• rear camera – a photo is taken using the device's rear camera (if present)

• front camera – a photo is taken using the device's front camera (if present)

• album – the photo is taken from the device's recent camera roll

The maxwidth and maxheight parameters constrain the maximum size of an image. The chosen 
image will be scaled down proportionally to fit within the size specified. If either size specified is 0,  
then the parameter is ignored.

If the source type isn't available on the target device, the command will return with result "source  
not available". If the user cancels the pick, the command will return with result "cancel". Otherwise 
a new image object will be created on the current card of the default stack containing the chosen 
image.

When running on an iPhone, the photo-picker is displayed using the standard iOS fullscreen overlay 
view.

When running on an iPad, the photo-picker is displayed using a standard iOS pop-over. In this case, 
the pop-over is positioned relative to the rect of the target at the time the iphonePickPhoto 
command was called.

Note: The image object is cloned from the templateImage, so you can use this to configure settings  
before calling the picker.
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Saving photos to the users album

You can save an image to the user's photo album by using:

iphoneExportImageToAlbum imageTextOrControl

Where imageTextOrControl is one of:

• the binary data of an image (the 'text') in PNG, GIF or JPEG format

• a long id of an image object containing an image in PNG, GIF or JPEG format

The command will return empty in the result if exporting succeeded. Otherwise it will return one 
of:

• could not find image – the image object could not be found

• not an image – the object was not an image

• not a supported format – the image object in not of PNG, GIF or JPEG format

• export failed – an error occurred while trying to save the image to the album

If the device has a camera, the image is saved to the Camera Roll, other wise it is saved to the 
Saved Photos album.

Note: When running in the simulator, there needs to be at least one image in the photo album for  
exporting to succeed. You can add images to the photo album in a simulator by dragging an image  
on the simulator window, and saving the image to album from Safari (click and hold on the image  
to bring up an alert with the option).

Keyboard Input

Surprisingly, the SDK does not provide direct control over the iPhoneOS software keyboard. 
However, an attempt has been made to provide some level of support for text input entry. If you 
have a text field which is focusable (traversalOn true), then whenever it has focus the iPhone 
keyboard will appear and allow basic text editing functionality.

While it is possible to use the non-Roman keyboards to enter text, for scripts which have combining 
and/or input method type requirements the input will be incorrect. For example, languages such as 
Russian can be entered correctly, but Korean will not work as expected.

The auto-capitalization, auto-correction, copy/paste, undo/redo and selection point magnification 
features that are present in standard iPhone text entry fields are not supported.

Configuring keyboard type

You can configure the type of keyboard that will be displayed by using the 
iphoneSetKeyboardType command:

iphoneSetKeyboardType type

Where type is one of:

• default – the normal keyboard

• alphabet – the alphabetic keyboard

• numeric – the numeric keyboard with punctuation
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• url – the url entry keyboard

• number – the number pad keyboard

• phone – the phone number pad keyboard

• contact – the phone contact pad keyboard

• email – the email keyboard

• decimal – the decimal numeric pad keyboard (iOS 4.1+)

The keyboard type setting takes effect the next time the keyboard is shown – it does not affect the  
currently displaying keyboard, if any.

Similarly you can configure the type of return key displayed on the keyboard using the 
iphoneSetKeyboardReturnKey command:

iphoneSetKeyboardReturnKey returnKey

Where returnKey is one of:

• default – the normal return key

• go – the 'Go' return key

• google – the 'Google' return key

• join – the 'Join' return key

• next – the 'Next' return key

• route – the 'Route' return key

• search – the 'Seach' return key

• send – the 'Send' return key

• yahoo – the 'Yahoo' return key

• done – the 'Done' return key

• emergency call – the 'emergency call' return key

Again, setting the return key only takes effect the next time the keyboard is shown.

If you wish to configure the keyboard options based on the field that is being focused, simply use 
the commands in an openField handler of the given field. The keyboard is only shown after this 
handler returns, so it is the ideal time to configure it.

Activation notifications

The following messages will be sent to the current card of the default stack when the keyboard is 
shown or hidden:

keyboardActivated

keyboardDeactivated

Handle these messages to move controls or change the display layout to take account of the 
restricted screen area that will be available.
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Orientation handling

The iOS engine includes support for automatic handling of changes in orientation and in so doing 
gains use of the smooth iOS standard animation rotation animation (note this replaces the previous 
approach of using iphoneRotateInterface which no longer does anything).

Example: You can find a simple stack using the orientation handling features in the IDE resources  
folder (open using the Help > Example Stacks and Resources menu item). The stack can be found 
at: Mobile Examples/Orientation Example.livecode

Auto-rotation support

You can configure which orientations your application supports, and also lock and unlock changes 
in orientation.

The engine will automatically rotate the screen whenever the following are true.

• it detects an orientation change

• the orientation is in the currently configured 'allowed' set

• the orientation lock is off

Such a rotation may result in a resizeStack message being sent since rotating at 90 degrees switches 
width and height.

Querying orientation

You can fetch the current device orientation using the iphoneDeviceOrientation() function. This 
returns one of:

• unknown – the orientation could not be determined

• portrait – the device is being held upward with the home button at the bottom

• portrait upside down – the device is being held upward with the home button at the top

• landscape left – the device is being held upward with the home button on the left

• landscape right – the device is being held upward with the home button on the right

• face up – the device is lying flat with the screen upward

• face down – the device is lying flat with the screen downward

Similarly, you can fetch the current interface orientation using the iphoneOrientation() function. 
This returns one of portrait, portrait upside down, landscape left and landscape right. With the 
same meanings as for device orientation.

Controlling auto-rotation

To configure which orientations your application supports use:

iphoneSetAllowedOrientations orientations

Here orientations must be a comma-delimited list consisting of at least one of portrait, portrait  
upside down, landscape left and landscape right. The setting will take effect the next time an 
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orientation change is effected – the interface's orientation will only be changed if the new 
orientation is among the configured list. You can query the currently allowed orientations with the 
iphoneAllowedOrientations() function.

To lock or unlock orientation changes for a time use:

iphoneLockOrientation and iphoneUnlockOrientation

The orientation lock is nestable, and when an unlock request causes the nesting to return to zero, the 
interface will rotate to match the devices current orientation (assuming it is in the set of allowed 
orientations). You can query the current orientation lock state with the iphoneOrientationLocked() 
function.

Orientation changed notification

An application will receive an orientationChanged message if the device detects a change in its 
position relative to the ground, and you can use the iphoneDeviceOrientation() function to find out 
the current orientation. This message is sent to the current card of the default stack.

The orientationChanged message is sent before any automatic interface rotation takes place thus 
changes to the orientation lock state and allowed set can be made at this point and still have an 
effect. If you wish to perform an action after the interface has been rotated, then either do so on 
receipt of resizeStack, or by using a send in 0 millisecs message.

Initial orientation handling

On startup, the engine reads the settings of 'initial orientation' and 'supported orientations' from the 
plist (as configured by the iOS standalone settings pane). It uses the supported orientations it finds 
to initialize the orientations allowed by autorotation (i.e. iphoneSetAllowedOrientations), and the 
initial orientation it finds to ensure the interface starts the correct way round.

To ensure that your application works in only specific orientations from the outset, you need only 
configure the options in the standalone builder. In particular, you need take no further action in  
script.

Resolution handling

The new iPhone 4 has a display with double the resolution in both horizontal and vertical directions. 
By default, iOS handles this by mapping one logical 'point' to two physical 'pixels' with applications 
(rev included) interpreting everything in terms of logical points. This means that apps targetted for 
older devices will run identically on the newer iPhone 4 devices.

You can use the screenRect, the working screenRect and the effective working screenRect 
properties to find out the current full size of the screen, the area not including the status bar and the 
area not including the status bar and keyboard respectively.

As the screenRect and associated properties all deal in logical points, they do not reflect the actual 
device resolution at which the app is being displayed. To fetch the device screen's resolution in 
pixels use the iphoneDeviceResolution() function. This will return a string in the form width, 
height – with the values being given in pixels.

To use the full resolution of such high-resolution devices, use the command:

iphoneUseDeviceResolution usePixels, [ nativeControlsUsePixels ] 
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If usePixels is true, LiveCode will ensure that co-ordinates and sizes specified in LiveCode objects 
are treated as being in pixels, rather than logical points. In particular, when changed, a resizeStack 
message will be sent notifying in the size change of the current main-stack, and functions and 
properties (such as the screenRect) will reflect co-ordinates in pixels.

If nativeControlsUsePixels is true and usePixels is true, any co-ordinates and sizes passed to the 
iOS native controls (i.e. those managed through the iphoneControl collection of handlers) will also 
use pixels rather than points. If not specified, or usePixels is false, native controls will assume co-
ordinates and sizes are in points.

Note: The notion of pixel and logical point remains valid on older devices, its just that it is always  
1-1 thus using this command will have no effect there.

The scale of the devices screen (relative to a non-Retina display) can be queried using 
iphoneDeviceScale(). This function will return 2 if the display is a Retina display, or 1 otherwise. 
The function mobilePixelDensity() is a synonym of iphoneDeviceScale().

Location and heading tracking

The iOS engine can use CoreLocation to track both the position and heading of the device, 
assuming the necessary GPS and / or digital compass hardware is present.

Location tracking (GPS)

Note that as of 5.5-dp-1, this syntax has been deprecated in favour of the new generic sensor syntax. 
See the section “Sensor tracking”.

Determining support

To determine if a device has the necessary hardware support for tracking location using GPS use the 
iphoneCanTrackLocation() function.

This returns true if location can be tracked, or false otherwise.

Activating and deactivating tracking

Assuming the hardware is present, tracking of the current location of the device can be activated 
and deactivated by using:

iphoneStartTrackingLocation

iphoneStopTrackingLocation

Starting to track location may request permission from the user to access the GPS hardware 
depending on system settings.

Detection location changes

You can detect changes in location by handling the locationChanged message. This message is sent 
to the current card of the default stack.

If location tracking cannot be started (typically due to the user 'not allowing' access to 
CoreLocation) then a trackingError message is sent instead. (Note – this has been updated from 
locationError in 5.5-dp-1).
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Querying the location

While location tracking is active, the current location of the device can be fetched by using the  
iphoneCurrentLocation() function.

If location tracking has not been enabled this function returns empty.

If location tracking is active then it returns an array with the following keys:

• horizontal accuracy – the maximum error in meters of the position indicated by longitude 
and latitude

• latitude – the latitude of the current location, measured in degrees relative to the equator.  
Positive values indicate positions in the Northern Hemisphere, negative values in the 
Southern.

• longitude – the longitude of the current location, measured in degrees relative to the zero 
meridian. Positive values extend east of the meridian, negative values extend west.

• vertical accuracy – the maximum error in meters of the altitude value.

• altitude – the distance in meters of the height of the device relative to sea-level. Positive 
values extend upward of sea-level, negative values downward.

• timestamp – the time at which the measurement was taken, in seconds since 1970.

If the latitude and longitude could not be measured, those keys together with the horizontal  
accuracy key will not be present. If the altitude could not be measured, that key together with the 
vertical accuracy will not be present.

Heading tracking (digital compass)

Note that as of 5.5-dp-1, this syntax has been deprecated in favour of the new generic sensor syntax. 
See the section “Sensor tracking”.

Determining support

To determine if a device has the necessary hardware support for tracking heading using a digital 
compass use the iphoneCanTrackHeading() function.

This returns true if location can be tracked, or false otherwise.

Note: The digital compass is only supported in iOS 4.0 and later.

Activating and deactivating tracking

Assuming the hardware is present, tracking of the current heading of the device can be activated 
and deactivated by using:

iphoneStartTrackingHeading

iphoneStopTrackingHeading

Starting to track heading may request the user to calibrate the magnetometer, see the calibration 
section for more details.
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Detection heading changes

You can detect changes in heading by handling the headingChanged message. This message is sent 
to the current card of the default stack.

If heading tracking cannot be started (typically due to a lack of calibration) then a trackingError 
message is sent instead. (Note – this has been updated from headingError in 5.5-dp-1).

Querying the heading

While heading tracking is active, the current heading of the device can be fetched by using the 
iphoneCurrentHeading() function.

If heading tracking has not been enabled this function returns empty.

If heading tracking is active then it returns an array with the following keys:

• accuracy - The maximum deviation (measured in degrees) between the reported heading and 
true geomagnetic heading. The lower the value, the more accurate the reading.

• magnetic heading - The heading (measured in degrees) relative to magnetic north.

• true heading - The heading (measured in degrees) relative to true north. If the true heading 
could not be calculated (usually due to heading tracking not being enabled, or lack of 
calibration), this key will not be present.

• heading - The true heading if available, otherwise the magnetic heading.

• x, y, z - The geomagnetic data (measured in microteslas) for each of the x, y and z axes.

• timestamp - The time at which the measurement was taken, in seconds since 1970.

Heading calibration

It is sometimes necessary for the system to prompt the user to calibrate the magnetometer in order 
to provide reliable heading information.

By default, this facility is turned off – i.e. the system will not prompt for calibration.

To control whether the system can prompt the user for calibration use:

iphoneSetHeadingCalibrationTimeout timoutInSeconds

If timeoutInSeconds is zero no calibration prompt will be displayed. If non-zero, it determines the 
maximum length of time a prompt for calibration will be displayed to the user. If the user does not 
choose to calibrate the device within that time, the prompt will be dismissed.

The current setting of the timeout can be queried using iphoneHeadingCalibrationTimeout().

Sensor tracking

As of LiveCode 5.5-dp-1, sensor support has been unified into a new set of easy to use syntax. 
Four different sensor can be tracked:

• location – tracks the location of the device using either GPS or network triangulation

• heading – tracks the heading of the device using the digital compass

• acceleration – tracks the devices motion using the accelerometer
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• rotation rate – tracks the rotation of the device

The names detailed in bold will be used to reference the sensors.

Sensor availability

mobileSensorAvailable(sensor)

The function mobileSensorAvailable will return true or false depending upon the availability of the 
given sensor.  Here, sensor is the name of the sensor you wish to check as detailed in the previous 
section.

Start tracking sensor

mobileStartTrackingSensor sensor, [loosely]

If a sensor is available, you can start tracking it using the command mobileStartTrackingSensor. 
Once tracking a sensor, periodic messages will be sent to the card specifying any changes.  This 
also enables you to query the reading of a sensor at any point.

The parameter loosely is a boolean determining how detailed the readings from the sensors should 
be. 

• true - readings will be determined without using accurate (but power consuming) sources 
such as GPS

• false - readings will be determined using accurate(but power consuming) sources such as 
GPS

Stop tracking sensor

mobileStopTrackingSensor sensor

You can stop tracking a sensor at any point using the command mobileStartTrackingSensor.  This 
ill mean that the periodic update messages will no longer be dent and that you can no longer query 
the sensor for readings.

Sensor update messages

Once mobileStartTrackingSensor has been called, update messages will be sent to the current 
card, detailing the sensors latest reading.

locationChanged latitude, longitude, altitude

• latitude – the latitude of the device

• longitude – the longitude of the device

• altitude – the altitude of the device

headingChanged heading

• heading - the heading of the device, in degrees relative to true north if available, otherwise 
relative to magnetic north

accelerationChanged x, y, z
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• x - the rate of acceleration around the x axis, in radians/second

• y - the rate of acceleration around the x axis, in radians/second

• z - the rate of acceleration around the x axis, in radians/second

rotationRateChanged x, y, z

• x - the rate of rotation around the x axis, in radians/second

• y - the rate of rotation around the y axis, in radians/second

• z - the rate of rotation around the z axis, in radians/second

If at any point there is an error tracking one of the sensors, the trackingError message will be sent.

trackingError sensor, errorMessage

Getting a sensor reading

In addition to the update messages that are sent, you can get the reading of any sensor you are 
tracking using the function mobileGetSensorReading

mobileSensorReading(sensor, [detailed])

The boolean parameter detailed determines the amount of detail present in the data returned.  If this 
is false, the data returned is a comma separated list.  If true, an array is returned.  By default,  
detailed is false.

The data returned depends upon the sensor.

Location -  a comma separated list of the latitude, longitude and altitude of the device. If detailed is 
true an array containing the keys latitude, longitude, altitude, time stamp, horizontal accuracy and  
vertical accuracy is returned. 

If the latitude and longitude could not be measured, those values together with the horizontal  
accuracy key will not be present. If the altitude could not be measured, that value together with the 
vertical accuracy will not be present.

Heading - the heading of the device in degrees. If detailed is true an array containing the keys 
heading, magnetic heading, true heading, time stamp, x, y, z and accuracy is returned.

Acceleration - a comma separated list of the acceleration in the x, y and z axes. If detailed is true 
an array containing the keys x, y, z and timestamp is returned.

Rotation Rate - a comma separated list of the rate of rotation around the x, y and z axes. If detailed 
is true an array containing the keys x, y, z and timestamp is returned.

Email composition

Basic support

A version of revMail has been implemented that hooks into the iPhone's MessageUI framework. 
Using this, you can compose a message and request that the user send it using their currently 
configured mail preferences.

The syntax of revMail is:
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revMail toAddress, [ ccAddress, [ subject, [ messageBody ] ] ]

Where the address fields are comma separated lists of email address. If any of the parameters are 
not present, the empty string is used instead.

Upon return, the result will be set to one of:

• not configured – if the user has turned off or has not setup mail access on their device

• cancel – if the user chooses to cancel the send

• saved – if the user chose to save the message in drafts

• sent – if the user elected to send the email

• failed – if sending the email was attempted, but it failed

Note that once you've called the revMail command you have no more control over what the user 
does with the message – they are free to modify it and the addresses as they see fit.

Advanced support

More complete access to iOS's mail composition interface is gained by using one of the following 
commands:

iphoneComposeMail subject, [ recipients, [ ccs,  [ bccs, [ body, [ attachments ]]]]]

iphoneComposeUnicodeMail subject, [ recipients, [ ccs,  [ bccs, [ body, [ attachments ]]]]]

iphoneComposeHtmlMail subject, [ recipients, [ ccs,  [ bccs, [ body, [ attachments ]]]]]

All commands work the same, except different variants expect varying encodings for the subject 
and body parameters:

• subject – the subject line of the email. If the Unicode form of the command is used, this 
should be UTF-16 encoded text.

• recipients – a comma -delimited list of email addresses to place in the email's 'To' field.

• ccs – a comma-delimited list of email addresses to place in the email's 'CC' field.

• bccs – a comma-delimited list of email addresses to place in the email's 'BCC' field.

• body – the body text of the email. If the Unicode variant is used this should be UTF-16 
encoded text; if the HTML variant is used then this should be HTML. 

• attachments – either empty to send no attachments, a single attachment array or a one-based 
numeric array of attachment arrays to include.

The attachments parameter consists of either a single array, or an array of arrays listing the 
attachments to include. A single attachment array should consist of the following keys:

• data – the binary data to attach to the email (not needed if file present)

• file – the filename of the file on disk to attach to the email (not needed if data present)

• type – the MIME-type of the data.

• name – the default name to use for the filename displayed in the email

If you specify a file for the attachment, the engine's does its best to ensure the least amount of 
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memory is used by asking the OS to only load it from disk when needed. Therefore, this should be 
the preferred method when attaching large amounts of data.

For example, sending a single attachment might be done like this:

put "Hello World!" into tAttachment["data"]

put "text/plain" into tAttachment["type"]

put "Greetings.txt" into tAttachment["name"]

iphoneComposeMail tSubject, tTo, tCCs, tBCCs, tBody, tAttachment

If multiple attachments are needed, simply build an array of attachment arrays:

put "Hello World!" into tAttachments[1]["data"]

put "text/plain" into tAttachments[1]["type"]

put "Greetings.txt" into tAttachments[1]["name"]

put "Goodbye World!" into tAttachments[2]["data"]

put "text/plain" into tAttachments[2]["type"]

put "Farewell.txt" into tAttachments[2]["name"]

iphoneComposeMail tSubject, tTo, tCCs, tBCCs, tBody, tAttachments

Note: There are hard limits imposed by the OS of the size of attachments that can be made. This  
isn't precisely specified anywhere but appears to be around 16Mb based on forum threads.

Upon completion of a compose request, the result will be set to one of the following:

• sent – the email was sent successfully

• failed – the email failed to send

• saved – the email was not sent, but the user elected to save it for later

• cancel – the email was not sent, and the user elected not to save it for later

• not configured – the device is not configured to send email

Some devices will not be configured with email sending capability. To determine if the current 
device is, use the iphoneCanSendMail() function. This returns true if the mail client is configured.

Text messaging support

Use the command mobileComposeTextMessage to launch the default text messaging app.

 mobileComposeTextMessage recipients, [body]

The recipients is a comma separated list of phone numbers you want the message to be sent to.  The 
optional body is the content of the message you wish to sent.

Note that once you've called the mobileComposeTextMessage command you have no more control 
over what the user does with the message – they are free to modify it and the addresses as they see 
fit.

Upon completion of a compose request, the result is set to one of the following:

• sent - the text was sent successfully
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• cancel - the text was not sent, and the user elected not to save it for later

• failed - the text could not be sent

• false - the device does not have text messaging functionality

You can determine if the device has the text messaging client configured using the function 
mobileCanComposeTextMessage().  This returns true if the client is configured.

File and folder handling

In general handling files and folders in the iPhone engine is the same as that on the desktop. All the 
usual syntax associated with such operations will work. Including:

• open file/read/write/seek/close file

• delete file

• create folder/delete folder

• setting and getting the folder

• listing files and folders using the [ detailed ] files and the [ detailed ] folders

• storing and fetching binfile: and file: urls

However, it is important to be aware that the iPhoneOS imposes strict controls over what you can 
and cannot access. Each application in iPhoneOS is stored in its own 'sandbox' folder (referred to as 
the home folder. An application is free to read and write files within this folder and its descendants, 
but is not allowed to access anything outside of this.

When an application is installed on a phone (or in the simulator) a number of initial folders are 
created for use by the application. You can locate the paths to these folders using the 
specialFolderPath() function with the following selectors:

• home – the (unique) folder containing the application bundle and its associated data and 
folders

• documents – the folder in which the application should store any document data (this folder 
is backed up by iTunes on sync)

• cache – the folder in which the application should store any transient data that needs to be 
preserved between launches (this folder is not backed up by iTunes on sync)

• library – the folder in which the application can store data of various types. In particular, 
data private to the application should be stored in a folder named with the app's bundle 
identifier inside library. (this folder is backed up by iTunes on sync).

• temporary – the folder in which the application should store any temporary data that is not 
needed between launches (this folder is not backed up by iTunes on sync)

• engine – the folder containing the built standalone engine (i.e. the bundle). This is useful for 
constructing paths to resources that have been copied into the bundle at build time.

In general you should only create files within the documents, cache, and temporary folders. Indeed, 
be careful not to change or add any files within the application bundle. The application bundle is  
digitally signed when it is built, and any changes to it after this point will invalidate the signature  
and prevent it from launching.
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Note: Unlike (most) Mac OS X installs, the iPhoneOS filesystem is case-sensitive so take care to  
ensure that you consistently use the same casing for filenames when constructing them. Also note  
that the Simulator has the same case-sensitivity as the host system and not the device.

System alert support

Support has been added for the beepSound and beep commands. These hook into iPhoneOS's 
standard PlayPlayerSound support.

To specify a sound to be played as the system sound, use the beepSound global property. This 
should be set to the filename of the sound to use when beep is executed. If you want no sound to 
play when using beep, simply set the beepSound to empty.

To perform a system alert, use the beep command. If no sound has been specified via the 
beepSound global property, the engine will request a vibration alert.

Note: The iPhone has no default system alert sound so if a sound is required one must be specified  
by using the beepSound. The action of beep is controlled by the system and depends on the user's  
preference settings. In particular, a beep will only cause a vibration if the user has enabled that  
feature. Similarly, a beep will only cause a sound if the phone is not in silent mode.

Vibration support

mobileVibrate [numberOfTimes]

To make the device vibrate, use the command mobileVibrate.  The parameter  numberOfTimes 
determines the number of times you wish the device to vibrate.  This defaults to 1.

Basic sound playback support

Basic support for playing sounds has been added using a variant of the play command. A single 
sound can be played at once by using:

play soundFile [ looping ]

Executing such a command will first stop any currently playing sound, and then attempt to load the 
given sound file. If looping is specified the sound will repeat forever, or until another sound is 
played.

If the sound playback could not be started, the command will return "could not play sound" in the 
result.

To stop a sound that is currently playing, simply use:

play empty

The volume at which a sound is played can be controlled via the playLoudness global property.

The overall volume of sound playback depends on the current volume setting the user has on their 
device.

This feature uses the built-in sound playback facilities on the iPhone (AVPlayer, to be specific) and 
as such has support for a variety of formats including AIFF and MP3's.

You can monitor the current sound being played by using the sound global property. This will 
either return the filename of the sound currently being played, or "done" if there is no sound 
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currently playing.

Multi-channel sound support

In addition to basic sound playback support, there is also support for playing sounds on different 
channels. This feature uses the iOS AVAudioPlayer object, which allows many concurrent sounds to 
be played simultaneously.

Example: You can find a simple stack using the multi-channel soundl features in the IDE resources  
folder (open using the Help > Example Stacks and Resources menu item). The stack can be found 
at: Mobile Examples/Sound Example.livecode

Playing Sounds

To play a sound on a given channel use the following command:

iphonePlaySoundOnChannel sound, channel, type

Where sound is the sound file you wish to play, channel is the name of the channel to play it on and 
type is one of:

• now – play the sound immediately, replacing any current sound (and queued sound) on the 
channel.

• next – queue the sound to play immediately after the current sound, replacing any previously 
queued sound. If no sound is playing the sound is prepared to play now, but the channel is 
immediately paused – this case allows a sound to be prepared in advance of it being needed.

• looping – play the sound immediately, replacing any current sound (and queued sound) on 
the channel, and make it loop indefinitely. 

If a sound channel with the given name doesn't exist, a new one is created. When queuing a sound 
using next, the engine will 'pre-prepare' the sound long before the current sound is played, this 
ensures minimal latency between the current sound ending and the next one beginning.

If an empty string is passed as the sound parameter, the current and scheduled sound on the given 
channel will be stopped and cleared.

When a sound has finished playing naturally (not stopped/replaced) on a given channel, a 
soundFinishedOnChannel message is sent to the object which played the sound:

soundFinishedOnChannel channel, sound

The message is sent after the switch has occurred between a current and next sound on the given 
channel. This makes it is an ideal opportunity to schedule the next sound on the channel, thus 
allowing continuous and seamless playback of sounds.

To stop the currently playing sound, and to clear any scheduled sound, on a given channel use:

iphoneStopPlayingOnChannel channel

To pause the currently playing sound on a given channel use:

iphonePausePlayingOnChannel channel

To resume the current sound's playback on a given channel use:

iphoneResumePlayingOnChannel channel
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Channel Properties

To control the volume of a given sound channel use the following:

iphoneSetSoundChannelVolume channel, volume

iphoneSoundChannelVolume(channel)

Here channel is the channel to affect, and volume is an integer between 0 and 100 where 0 is no 
volume, 100 is full volume.

Changing the volume affects the currently playing sound and any sounds played subsequently on 
that channel.

Note that you can set the volume of a non-existant channel and this will result in it being created.  
This allows you to set the volume before any sounds are played. If you attempt to get the volume of 
a non-existent channel, however, empty will be retuned.

To find out what sounds (if any) are currently playing and are scheduled for playing next on a given 
channel use:

iphoneSoundOnChannel(channel)

iphoneNextSoundOnChannel(channel)

These will return empty if no sound is currently (scheduled for) playing (or the channel doesn't 
exist).

To query a channel's current status use iphoneSoundChannelStatus(). This returns one of the 
following:

• stopped – there is no sound currently playing, nor any sound scheduled to be playing

• paused – there are sounds scheduled to be played, but the channel is currently paused

• playing – a sound is currently playing on the channel

Managing Channels

To get a list of the sound channels that currently exist use:

iphoneSoundChannels()

This returns a return-delimited list of the channel names.

Sound channels persist after any sounds have finished playing on them, retaining the last set volume 
setting. To remove a channel from memory completely use:

iphoneDeleteSoundChannel channel

Sound channels only consume system resources when they are playing sounds, thus you don't need 
to be concerned about having many around at once (assuming most are inactive!).

Audio session support

The category of the application's audio session can be set using the command: 
iphoneSetAudioCategory category

The audio category determines how you application's audio interacts with other application's and 
how it reacts to screen locking and the silent switch.
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The category can be one of the following:

• ambient – Audio from other apps will mix in. Audio will be silenced by screen locking and 
the silent switch.

• solo ambient – Default category.  Audio from other apps is silenced. Audio will be silenced 
by screen locking and the silent switch.

• playback - Audio from other apps is silenced. Audio will be not be silenced by screen 
locking and the silent switch.

• record - Audio is silenced when recording. Recording continues when the screen is locked.

• play and record - Audio from other apps is silenced. Audio will be not be silenced by screen 
locking and the silent switch. Audio is not silenced when recording.

• audio processing – To be used when processing audio.  Audio playback and recording is 
disabled.

Video playback support

Basic support for playing videos has been added using a variant of the play command. A video file 
can be played by using:

play video ( video-file | video-url )

The video will be played fullscreen, and the command will not return until it is complete, or the 
user dismisses it.

If a path is specified it will be interpreted as a local file. If a url is specified, then it must be either  
an 'http', or 'https' url. In this case, the content will be streamed.

The playback uses iOS's built-in video playback support (MPMoviePlayer) and as such can use any 
video files supported by that, including mp4's.

On iPhoneOS 3.1.3, the video will always play with landscape orientation (there is no 'legal' way to 
change this). On iOS 3.2 and later, however, the orientation of the video will be tied to the current 
interface orientation.

Appearance of the controller is tied to the showController of the templatePlayer. Changing this 
property to true or false, will cause the controller to either be shown, or hidden.

When a movie is played without controller, any touch on the screen will result in a movieTouched 
message being sent to the object's whose script started the video. The principal purpose of this 
message is allow the play stop command to be used to stop the movie. e.g.

on movieTouched

play stop

end movieTouched

Note: The movieTouched message is not sent if the video is played with showController set to true.

Playing a video can be made to loop by setting the looping of the templatePlayer to true before 
executing the play video command. Note that looping video is only supported on iOS 3.2 and 
higher.

A section of a video can be played by setting the playSelection of the templatePlayer to true 
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before executing the play video command. This will then use the startTime and the endTime 
properties of the templatePlayer to determine what section to play. The values of these properties 
will be interpreted as the number of milliseconds from the beginning of the video.

URL launching support

Support for launching URLs has been added. The launch url command can now be used to request 
the opening of a given url:

launch url urlToOpen

When such a command is executed, the engine first checks to see if an application is available to 
handle the URL. If no such application exists, the command returns "no association" in the result. 
If an application is available, the engine requests that it launches with the given url.

Using this syntax it is possible to do things such as:

• open Safari with a given http: url

• open the dialer with a given phone number using a tel: url

Important:  Successfully launching a url will cause another application to open and the requesting  
application to be quit. The application will receive a shutdown message before this happens,  
however.

Font querying support

The list of available fonts can now be queried by using the fontNames function. This returns a 
return-delimited list of all the available font families.

The list of available styles can be queried by using the fontStyles function:

fontStyles(fontFamily, 0)

This will return the list of all font names in the given family. It is these names which should be used 
as the value of the textFont property.

Note: Strictly speaking the list returned by fontStyles isn't the font styles, but the font names and  
the list returned by fontNames isn't the font names but the font families.

Visual effect support

The iOS engine now has support for a range of visual effects – including some specific to iOS. The 
following effects are available:

• scroll (up | left | down | right)

• reveal (up | left | down | right)

• push (up | left | down | right)

• dissolve

• curl (up | down)

• flip (left | right)

Speed can be controlled via the usual adjectives very slow, slow, normal, fast or very fast.
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For the flip visual effect, the background behind the flip will be taken from the background color of 
the current stack – i.e. the card is cut out and flipped over the stack.

Status bar configuration support

You can now configure the status bar that appears at the top of the iOS screen.

To control the visibility of the status bar use the following commands:

iphoneShowStatusBar

iphoneHideStatusBar

To control the style of the status bar use the following command:

iphoneSetStatusBarStyle style

Where style is one of:

• default – the default mode for the device

• translucent – a semi-transparent status bar (in this case the stack will appear underneath it)

• opaque – a black status bar (in this case the stack will appear below it).

On iPad devices, anything other that default has no effect.

Locale and system language query support

You can query the list of preferred languages using the iphonePreferredLanguages() function. 
This returns a return-delimited list of standard language tags in order of user preference (for 
example "en", "fr", "de", etc.)

You can query the currently configured locale using the iphoneCurrentLocale() function. This 
returns a standard locale tag (for example "en_GB", "en_US", "fr_FR", etc.)

Runtime environment querying

You can fetch numerous pieces of information about the environment in which the current 
application is running with the following syntax.

To determine what processor an application is running on use the processor. In the simulator this 
will return i386 and on a real device this will return ARM.

To determine the type of device an application is running on use the machine. This will return one 
of:

• iPod Touch – the device is one of the iPod Touch models

• iPhone – the device is one of the iPhone models

• iPhone Simulator – the device is a simulated iPhone

• iPad – the device is the iPad

• iPad Simulator – the device is a simulator iPad

To determine the version of iPhoneOS the application is running on, use the systemVersion. For 
example, if the device has iPhoneOS 3.2 installed, this property will return 3.2; if the device has 
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iPhoneOS 3.1.3 installed, this property will return 3.1.3.

You can fetch the current device's unique system identifier with the iphoneSystemIdentifier() 
function. This returns a string in the standard UUID/GUID format.

The bundle identifier for the current application can be queried with iphoneApplicationIdentifier() 
function. This returns the identifier specified in the iOS standalone settings, and is useful (among 
other things) for creating a private folder in specialFolderPath("library") following Apple 
guidelines.

Modal Pick-Wheel support

You can present the user with a list of choices to pick from using standard iOS interface elements 
using:

iphonePick optionList, initialIndex, [ optionList, initialIndex, … ], [ style ], [button], [view]

Where optionList is a return-delimited list to choose from, and initialIndex is the (1-based) index of 
the item to be initially highlighted. The item the user chooses is returned in the result.

A pick-wheel with multiple columns can be created by specifying more than one optionList  
initalIndex pair.  For multi-column pick-wheels, the result will be a comma separated list of the 
chosen items, on item for each column.

On the iPhone, a standard Action Sheet pops up containing the standard pick-wheel user interface 
element; and on the iPad, a standard pop-over is presented with a list to choose from.

There are two modes of operation of the pick command, depending on the value of initialIndex.

If initialIndex is non-zero, the operation will act as a means to change an existing selection. The 
item specified by the initial index will be hilited (checked or hilited on iPad), and will be returned 
by default in the case the user does not choose a new item.

If initialIndex is zero, the operation will act as a means to select from a list of options. The user will 
be able to cancel the operation by either clicking 'Cancel' (iPhone) or touching outside of the pop-
over (iPad). If the operation is cancelled, 0 will be returned; otherwise the selected item will be 
returned.

The optional style parameter determines the type of display used on the iPad. If equal to 
"checkmark" a check-mark (tick) will be put against the currently selected item. If not present, the 
currently selected item will be hilited with the (standard) blue background.

The optional button parameter specifies if "Cancel" and/or "Done" buttons should be forced to be 
displayed with the picker dialog. The default behavior is device dependent, exhibiting the most 
native operation. 

• cancel - display the Cancel button on the Picker
• done - display the Done button on the Picker
• cancelDone - display the Cancel and Done buttons on the Picker
    

The optional view parameter specifies the type of view to be displayed when showing a single 
column of date on an iPad. By default a standard pop-over is displayed with a single column of 
data. If "picker" is specified, then the single column of data is replaced with a single picker wheel.
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Date picker support

You can present the user with a standard iOS date picker using:

iphonePickDate [mode], [initital], [min], [max], [step], [button]

The display style of the date picker will be determined by the users current calender style as 
configured in Settings.

The mode parameter determines the mode of the date picker and can be one of the following:

• date

• time

• dateTime

The mode defaults to date.

The initial parameter determines the initial  date to be displayed by the date picker.  If this is empty,  
the current date will be used.  This should be a time in seconds since the Unix Epoch.

The min parameter is the start range of the date picker. If this value is empty, there is no lower 
boundary. The value is ignored if min is greater than max. This should be a time in seconds since 
the Unix Epoch.

The max parameter is the end range of the date picker. If this value is empty, there is no upper 
boundary. The value is ignored if max is less than min. This should be a time in seconds since the 
Unix Epoch.

The step parameter specifies the minute interval size. This parameter is ignored if mode is set to  
"date". The default is 1.

The optional button parameter specifies if "Cancel" and/or "Done" buttons should be forced to be 
displayed with the picker dialog. The default behavior is device dependent, exhibiting the most 
native operation. 

• cancel - display the Cancel button on the Picker
• done - display the Done button on the Picker
• cancelDone - display the Cancel and Done buttons on the Picker

When the date picker is dismissed by the user, the selected date will be stored in the result.

Media picker support

You can present the user with the standard iOS media picker using:

iphonePickMedia [multiple], [type...]

Set multiple to true if you want to allow the user to pick more than one item.

You can specify the type of media item the user is to select from by passing one or more of the 
following:

• music - Specifies that the user should be allowed to select music items. 

• podCast - Specifies that the user should be allowed to select pod casts.

• audioBook - Specifies that the user should be allowed to select audio books. 
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• anyAudio - Specifies that the user should be allowed to select any audio item. 

If no types are passed, all media items will be displayed.

A return separated list of all the media items the user has picked will be present in the result.  A 
media item can be played back using the play command.

Contact Access 

Support to access and modify the iOS contact list has been added as of LiveCode 5.5.1-rc-1. 
Interaction with the contact list can be controlled either via native user interfaces or directly from 
the LiveCode syntax. 

UI Contact Access Features 

Four native user interfaces are available that allow contacts to be created, picked, shown or updated.  

Creating a Contact

You launch the native iOS contact creation dialog by calling the command mobileCreateContact. 
This allows the user to create a contact with the fields that the user considers to be required for the 
new contact. 

The result of this command returns either "empty" if no contact was created or the ID of a 
successfully created contact. 

Picking a Contact

The user can select a contact from the contact list by using the mobilePickContact command. The 
user is presented with a contact list dialog that shows all the contacts in the contact list. 

The result of this command returns either "empty" if no contact was selected or the ID of the 
selected contact. 

Showing a Contact 

It is possible to present the contact details of a contact to the user using the native iOS contact  
viewer. You launch the contact viewer by calling the command:

mobileShowContact contactID

The dialog is only launched if the provided contactID exists in the contact list. 

The result of this command returns either "empty" if no contact with the provided contactID exists, 
or the ID of the contact that was viewed.

Updating a Contact 

A contact can be pre-populated with information before launching an iOS contact creation dialog by 
using the command:

mobileUpdateContact propertyName, propertyString , [propertyName, propertyString]... 

This feature allows interaction with the contact creation process to be streamlined for the user. If an 
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application is already aware of some of the contact details that the user has to complete, then that  
data can be entered into the new contact automatically. 

The information to pre-populate contact information is provided in form of a comma delimited list  
of token,value pair strings. 

The supported tokens are listed under heading "Syntax Contact Access Features". 

The result of this command returns either "empty" if no contact was created or the ID of a 
successfully created contact.

Syntax Contact Access Features 

The LiveCode syntax supports direct contacts manipulation to create, find, remove a contact and to 
read contact data. Contact data manipulation is provided by the following tokens: 

Titles

• title, string - The title that is to appear at the top of the user interface. 

Person Information 

• firstname - The first name. 

• middlename - The middle name. 

• lastname - The last name. 

• alternatename - The alternative name. 

• nickname - The nick name. 

• firstnamephonetic - The phonetic transcription of the first name. 

• middlenamephonetic - The phonetic transcription of the middle name. 

• lastnamephonetic - The phonetic transcription of the last name. 

• prefix - The name prefix. 

• suffix - The name suffix. 

• organization - The name of the organization. 

• jobtitle - The job title. 

• department - The name of the department. 

• message - A person message. 

• note - A person note. 

E-Mail Addresses

• emailhome - The home e-mail address. 

• emailwork - The work e-mail address. 

• emailother - An alternative e-mail address. 

Telephone Numbers 
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• phonemobile - The mobile telephone number. 

• phoneiphone - The iPhone telephone number. 

• phonemain - The main telephone number. 

• phonehome – The home telephone number.

• phonework – The work telephone number.

• phonehomefax - The home FAX number. 

• phoneworkfax - The work FAX number. 

• phoneotherfax – An alternative FAX number (iOS 5.0 and later).

• phonepager - The pager number. 

• phoneother - An alternative telephone number. 

Home Address 

• addressstreethome - The home address street. 

• addresscityhome - The home address city. 

• addressstatehome - The home address state. 

• addressziphome - The home address ZIP code. 

• addresscountryhome - The home address country. 

• addresscountrycodehome - The home address country code. 

Work Address

• addressstreetwork - The work address street.

• addresscitywork - The work address city. 

• addressstatework - The work address state.

• addresszipwork - The work address ZIP code.

• addresscountrywork - The work address country.

• addresscountrycodework - The work address country code. 

Other Address

• addressstreetother - An alternative address street.

• addresscityother - An alternative address City.

• addressstateother - An alternative address state.

• addresszipother - An alternative address ZIP code.

• addresscountryother - An alternative address country. 

• addresscountrycodeother - An alternative address country code.            
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Adding a Contact

You can add a contact by calling the command mobileAddContact. This allows you to populate the 
entries of the new contact record with token,value pair strings of the following form: 

mobileAddContact propertyName, propertyString, [propertyName, propertyString]... 

The supported tokens are listed under heading "Syntax Contact Access Features". 

The result of this command returns either "empty" if no contact was created or the ID of a 
successfully created contact. 

Finding a Contact 

The contact list database can be queried, based on the contact name, using the command:

mobileFindContact contactName

It is possible to provide parts of the contact's name that is to be queried as the argument 
contactName. The first letter of the given name or surname would be sufficient to provide a search 
for a given contact. 

The result of this command returns either "empty" if no contact could be found or a comma 
delimited list of IDs of the contacts that match the search. 

Removing a Contact

A contact can be removed from the contact list by using the command:

mobileRemoveContact contactID

The result of this command returns either "empty" if no contact with the provided ID could be 
found or the ID of the contact that was deleted.

Getting Contact Data 

Information stored against a particular contact can be retrieved by calling the function:

 mobileGetContactData(contactID)

This function extracts all of the contact fields that are supported in LiveCode and returns them in 
form of an array with the array keys representing the tokens and the corresponding array values 
representing the contact specific information. 

This function returns an array of key/values that represent populated information if contact data was 
found. Contact records that are supported by LiveCode and were not populated are not returned in 
the array. 

Idle Timer configuration

By default, iOS will dim the screen and eventually lock the device after periods of no user-
interaction.

To control this behavior, use the following commands:

iphoneLockIdleTimer

iphoneUnlockIdleTimer
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Locking the idle timer increments an internal lock count, while unlocking the idle timer decrements  
the lock count. When the lock count goes from 0 to 1, the idleTimer is turned off; when the lock 
count goes from 1 to 0, the idleTimer is turned on.

To determine whether the idleTimer is currently locked (i.e. turned off) use 
iphoneIdleTimerLocked().

This feature wraps the UIApplication class's setIdleTimerDisabled method.

Querying camera capabilities

To find out the capabilities of the current devices camera(s), use the following function:

iphoneCameraFeatures( [ camera ] )

The camera parameter is a string containing either "rear" or "front". In this case, the capabilities of 
that camera are returned. These take the form of a comma-delimited list of one or more of the 
following:

• photo – the camera is capable of taking photos

• video – the camera is capable of recording videos

• flash – the camera has a flash that can be turned on or off

If the returned string is empty it means the device does not have that type of camera.

If no camera parameter is specified (or is empty), then a comma-delimited list of one or more of the 
following is returned:

• front photo – the front camera can take photos

• front video – the front camera can record video

• front flash – the front camera has a flash

• rear photo – the rear camera can take photos

• rear video – the rear camera can record video

• rear flash – the rear camera has a flash

If the returned string is empty it means the device has no cameras.

Clearing pending interactions

As interaction events (touch and mouse messages) are queued, it is possible for such messages to 
accumulate when they aren't needed. In particular, when executing 'waits', 'moves' or during card 
transitions.

To handle this case, the iphoneClearTouches command has been added. At the point of calling, this 
will collect all pending touch interactions and remove them from the event queue.

Note that this also cancels any existing mouse or touch sequences, meaning that you (nor the 
engine) will not receive a mouseUp, mouseRelease, touchEnd or touchCancel message for any 
current interactions.

A good example of when this command might be useful is when playing an instructional sound:
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on tellUserInstructions

play specialFolderPath("engine") & slash & "Instruction_1.mp3"

wait until the sound is "done"

iphoneClearTouches

end tellUserInstructions

Here, if the iphoneClearTouches call was not made, any tough events the user created while the 
sound was playing would be queued and then be delivered immediately afterwards potentially 
causing unwanted effects.

Managing redraws

The function iphoneSetRedrawInterval can be used to manage the way LiveCode handles 
redraws.  By default, LiveCode updates the screen immediately after any command that requires it.  
This means that several small screen updates may occur in quick succession when animation is 
combined with other dynamic screen elements. On mobile devices this can affect smoothness of 
animation where it would be better if multiple frequent redraws were replaced with a single periodic 
redraw. Setting the iphoneSetRedrawInterval enables this behaviour, where the screen is updated 
at a fixed interval tied to iOS's redraw rate.

 iphoneSetRedrawInterval frameInterval

frameInterval - A number specifying how often LiveCode should update the screen in line with the 
screen's refresh rate.  

0 - Turn off synchronized redraws and revert to default LiveCode redrawing behavior.
1 - Redraw every time iOS redraws.
2 - Redraw on every other iOS redraw.
x - Redraw every x iOS redraws.

Activity indicator

iOS provides a native animated activity indicator that sits above all other components and is used to 
indicate that an app is busy processing.

Use the iphoneActivityIndicatorStart command to display a native iOS activity indicator on the 
top of the LiveCode stack that is running.

iphoneActivityIndicatorStart [type], [xposition, yposition]

Here, type can be one of:

• gray – default, displays a small gray spoked animation
• white - displays a small white spoked animation
• whiteLarge - displays a large white spoked animation

The xposition and yposition specify the location in pixels of the activity indicator. If a location is 
not specified, then the animation is positioned in the middle of the screen.

You can turn the activity indicator off by calling iphoneActivityIndicatorStop.

 iphoneActivityIndicatorStop
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Busy indicator

Use the command mobileBusyIndicatorStart to display an activity dialog that will sit above all 
other controls and block user interaction. 

mobileBusyIndicatorStart style, [label]

The style parameter is used to determine the display style of the dialog.  At the moment, only 
“square” is supported.  This creates a square dialog box containing an animated progress indicator 
and an optional label.

The optional label parameter is used to pass any text which you wish to be displayed in the dialog.

To dismiss the dialog, use the mobileBusyIndicatorStop command.

mobileBusyIndicatorStop

Application icon badge support

The badge is the number that appears on the top right of you applications icon and is used to signify 
the number of pending activities.

To set the badge value, use the command iphoneSetNotificationBadgeValue passing an the integer 
value you want to appear in the badge.

To get the current badge value, use the function  iphoneGetNotificationBadgeValue().

Local notifications

Local notifications allow applications to schedule notifications with the operating system. The 
notification can be received when the application is running in the foreground, the application is  
running in the background or the application is not running at all. The notification is delivered 
differently, depending on the mode in which the application is in at the time the notification is  
received. 

mobileCreateLocalNotification alertBody, alertButtonMessage, alertPayload, alertTime, 
playSound, [badgeValue]

Use the command mobileCreateLocalNotification  to schedule a notification with the OS.

• alertBody- the text that is to be displayed on the notification dialog, that is raised when the 
application is not running

• alertButtonMessage - the button text on the notification dialog, that is to appear on the 
button that launches the application, when the application is not running

• alertPayload - a text payload that can be sent with the notification request. This payload is 
presented to the user via the localNotificationReceived message

• alertTime - the time at which the alert is to be sent to the application

• playSound - boolean to indicate if a sound is to be played when the alert is received

• badgeValue - the number value to which the badge of the application logo is to be set. 0 
hides the badge. Greater than 0 displays the value on the badge.

A return delimited list of all the currently pending notifications can be fetched using the function:
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mobileGetRegisteredNotifications().

You can query a given notification using the function mobileGetNotificationDetails.

mobileGetNotificationDetails(notification)

This returns an array with the following entries:

• body - the text that is to be displayed on the notification dialog (iOS) or status bar entry 
(Android) when the application is not running

• title - the button text on the notification dialog (iOS) or the title of the status bar entry 
(Android)

• payload - the text presented to the app via the localNotificationReceived message

• play sound - boolean indicating if a sound is to be played when the notification is received\

• badge value - the number value which should be displayed on the app logo (iOS) or on the 
status bar icon (Android) when the notification is received. No number will be displayed if 
this is zero

To cancel a notification use command mobileCancelLocalNotification.

mobileCancelLocalNotification notification

Here, the notification parameter is a value returned by mobileGetRegisteredNotifications().

To cancel all pending notifications, use the command mobileCancelAllLocalNotifications.

When you app receives a notification, the message localNotificationReceived will be sent.

localNotificationReceived message

Here, the message parameter is the payload specified when the notification was created.

Depending on the status of the application, iOS can launch a dialog box or open the login screen to 
inform the user that an application has information for them. The user can then decide whether or 
not to open the application. If the application is opened as a result of the notification, then LiveCode 
can handle the message. If an application is currently running when it receives a notification, then 
LiveCode can handle the message and process it as required.

If a badge number is received with the notification, then that badge value is displayed on the 
applications icon, but only if the application is not currently running. If the application is running, 
then a badge value update does not take place, as the application can handle the message without 
being launched.

Push notifications

Push notifications allow apps to avoid frequently polling for the availability of new remote data by 
providing a mechanism whereby notifications can be sent to the mobile device.

Yo must first registers with the service to obtain a device notification signature which is then sent to 
the remote server, which then uses the signature when communicating with the service to send 
notifications to the app.

The pushNotificationReceived message is sent once the application receives a push notification 
from a Push Notification Server.
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pushNotificationReceived message

Depending on the status of the application, iOS can launch a dialog box or open the login screen to 
inform the user that an application has information for them. The user can then decide whether or 
not to open the application. If the application is opened as a result of the notification, then LiveCode 
can handle the message. If an application is currently running when it receives a notification, then 
LiveCode can handle the message and process it as required.

If a badge number is received with the notification, then that badge value is displayed on the 
applications icon, but only if the application is not currently running. If the application is running, 
then a badge value update does not take place, as the application can handle the message without 
being launched.

The pushNotificationRegistered message is sent once the application starts up and registers with 
the Push Notification Server.

 pushNotificationRegistered signature

The signature parameter is the signature of the device. This is the unique device's signature that the 
Push Notification Server uses in order to send a notification to the device.  This can be fetched at 
any point using the function iphoneGetDeviceToken().

The application only tries to register with the Push Notification Server if the application was 
configured to handle Push Notifications in the Standalone application Builder.

The pushNotificationRegistrationError message is handled once the application starts up and 
tried, but failed to register with the Push Notification Server.

 pushNotificationRegistrationError errorMessage

Custom URL schemes

Specifying a custom URL allows you app to be woken up when the given URL is invoked.

To specify a custom URL, add the desired URL to the “URL Name” field of the standalone 
application builder.  For example, if you specify “myURL” as the URL name, then when the URL 
myURL:// is invoked, if installed, your app will be woken.

Extra parameters can be passed in the URL in the following format:

myURL://

myURL://some/path/here

myURL://?foo=1&amp;bar=2

myURL://some/path/here?foo=1&amp;bar=2

If you app is woken by a custom URL, the message urlWakeUp will be sent to the current card.

urlWakeUp urlString

A single parameter will be passed detailing the URL used to launch your app.  This value can bet 
retrieved at any point using the function mobileGetLaunchURL().  If the app was not launched 
from a URL then this will return empty.
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Network reachability checking (experimental)

The network connection on iOS devices is generally more transient than normal network 
connections and can change between wireless and wide-area wireless (GPRS, 3G, EDGE etc.) 
transport as it moves, and indeed be lost entirely.

As the behavior of an application may vary depending on what kind of network connection is 
present it is useful to be able to monitor a given server for the type of connection the device 
currently has to it.

To start monitoring a specific server for reachability via the network use:

iphoneSetReachabilityTarget hostNameOrAddress

Where hostNameOrAddress is the host name or IP address of the server to start monitoring, or 
empty to stop monitoring.

The server currently being monitored can be determined by using the iphoneReachabilityTarget() 
function. This returns empty if no server is currently being monitored.

While a server is being monitored, any changes to network connectivity that affect access to it will  
cause a reachabilityChanged message to be delivered to this card of the defaultStack:

reachabilityChanged hostNameOrAddress, reachabilityInfo

Here hostNameOrAddress will be the server that is being monitored (the same string as passed to 
iphoneSetReachabilityTarget), and reachabilityInfo will be a comma-delimited list of zero or 
more of the following items:

• transient – the specified server can be reached via a transient connection

• reachable – the specified server can be reached via the current network configuration.

• connection required – the specified server can be reached via the current network 
configuration, but a connection needs to be established before it can.

• connection on traffic – the specified server can be reached via the current network 
configuration, but a connection needs to be established before it can. Any traffic directed to 
the server will initiate the connection.

• intervention required – the specified server can be reached via the current network 
configuration, but some form of user intervention will be required to establish this 
connection.

• is local – the specified server is associated with a network interface on the current system.

• is direct – network traffic to the given server will not go through a gateway, but is routed 
directly to one of the interfaces in the system.

• is cell – the specified server can be reached via an EDGE, GPRS or other 'cell' connection.

If no items are specified then it means the given server is not currently reachable.

The current reachability facilities are a direct wrapper around the SCNetworkReachability functions  
of the OS, thus the reachabilityInfo flags are a direct mapping of what that provides.

Our testing indicates the following are reasonable guidelines for checking for various states:

• To determine if there is no network connection at all (e.g. flight-mode or no cell nor wireless 
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signal) use:

reachabilityInfo is empty

• To determine if a network connection should succeed use:

"reachable" is among the items of reachabilityInfo

• To determine if a network connection should succeed but would use a cell network use:

"is cell" is among the items of reachabilityInfo

• To determine if a network connection should succeed and would use a wireless network use:

"reachable" is among the items of reachabilityInfo and \

"is cell" is not among the items of reachabilityInfo

Feedback: Please let us know if you find any other useful combinations of flags, or indeed find  
cases where the above guidelines do not work. This feature is currently is lower-level than we  
would like, and will improve/replace it when we have better set of common empirical use-cases and  
scenarios to work from.

Important: This feature is currently experimental. This means that it may not be complete, or 
may fail in some circumstances that you would expect it to work. Please do not be afraid to try 
it out as we need feedback to develop it further.

In App Advertising

Ads are supplied by our ad partner inneractive and come in three different types: banner, full screen 
and text. Before you can begin placing ads, you must first register your app with inneractive. 

To do this, sign up with inneractive at the following URL: 
http://runrev.com/store/account/inneractive/.  Once successfully signed up with inneractive you 
must generate a key for your app.  Do this by clicking on the “Add App” tab of the inneractive 
dashboard and following the instructions provided.

Once you have a key for your app, you must register this with LiveCode using the 
mobileAdRegister command.  You will now be ready to place ads, using the mobileAdCreate 
command.

Registering Your App Key

Before you can begin creating ads, you must first register your app's unique Interactive identifier. 
All ad activity, including any revenue generated, will be logged against this id.

mobileAdRegister appKey

Creating & Managing Ads

Once your app key has been registered, you are now ready to create an ad.  To do so, use the 
command mobileAdCreate.

mobileAdCreate ad, [type], [topLeft], [metaData]

The parameters are as follows:
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• type: The type of ad. One of "banner", "text" or "full screen". Defaults to "banner".

• name: The name of the ad to create. This will be used to reference the ad throughout its 
lifetime.

• topLeft: The location in pixels of the top left corner of the ad. Defaults to 0,0.

• metaData: An array of values that will be used to target the ad. The keys are as follows:

◦ refresh: A value in seconds defining how often the ad will refresh, between 30 and 300. 
Defaults to 120.

◦ age: An integer defining the expected age of the target user.

◦ gender: The expected gender of the target user. The allowed values are M, m F, f, Male, 
Female.

◦ distribution id: The distribution Channel ID (559 for banner ads and full screen ads, 
600 for text ads).

◦ phone number: The user’s mobile number (MSISDN format, with international prefix).

◦ keywords: Keywords relevant to this user’s specific session (comma separated, without 
spaces).

◦ coordinates: GPS ISO code location data in latitude, longitude format.

◦ location: - A comma separated list of countries, state/province, city.

Ads can be deleted at any time using to command mobileAdDelete.

mobileAdDelete ad

You can get and set the top left of an ad using the following:

mobileAdGetTopLeft(ad)

mobileAdSetTopLeft(ad, topLeft)

The top left is the pixel coordinates of the top left corner of the ad.

You can get and set the visibility of an ad using the following:

mobileAdGetTopVisible(ad)

mobileAdSetTopVisible(ad, visible)

The visible is a boolean, set to true if the ad is visible, false otherwise.

A list of all the currently active ads can be fetched using the function:

mobileAds()

This returns a return-delimited list of the ad names. 

Messages

When an add is loaded or refreshed, the message adLoaded will be sent to the current card.

adLoaded  default

Here, default is a boolean, set to true if the loaded ad is a default ad.
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If a user clicks on an ad, the adClicked message will be sent to the current card.

adClicked 

If an ad fails to load the adLoadFailed message will be sent to the current card.

adLoadFailed

If an ad is about to resize the adResizeStart message will be sent to the current card.

 adResizeStart

When an ad has finished resizing the adResizeEnd message will be sent to the current card.

adResizeEnd

If an ad is about to expand the adExpandStart message will be sent to the current card.

 adExpandStart

When an ad has finished expanding the adExpandEnd message will be sent to the current card.

 adExpandEnd

In App Purchasing

Setup

In order to perform in app purchases you must first configure a number of items in iTunesConnect.

Setup a Contract

The first thing to do is make sure you have setup an ‘iOS Paid Applications’ contract. This is done 
in the ‘Contracts, Tax and Banking’ section of the iTunesConnect account.

Setup the In-App Purchase

If you haven’t already added your app to iTunesConnect you will need to do that first.

http://lessons.runrev.com/s/lessons/m/4069/l/33065-How-do-I-set-up-an-App-for-
Submission-to-iTunes-Connect-

Create your in-app purchase by selecting the application you want to associate it to, and then from 
the apps mini-page clicking ‘Manage In-App Purchases’ and then ‘Create New’. You will be asked 
to select a purchase type, set the price and provide various pieces of information. The result will be 
the creation of an in-app purchase with a unique ‘Product ID’. It is this ID that you will use while 
implementing your in-app purchase in LiveCode.

Syntax

Implementing in-app purchasing requires two way communication between your LiveCode app and 
the AppStore. Here is the basic process:

• Your app sends a request to purchase a specific in-app purchase to the AppStore

• The AppStore verifies this and attempts to take payment
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• If payment is successful the AppStore notifies your app

• Your app unlocks features or downloads new content / fulfils the in-app purchase

• Your app tells the AppStore that all actions associated with the purchase have been 
completed

• AppStore logs that in-app purchase has been completed

Commands & Functions

To determine if in app purchasing is available use:
mobileCanMakePurchase()

Returns true if in-app purchases can be made, false if not.

Throughout the purchase process, the AppStore sends purchaseStateUpdate messages to your app 
which report any changes in the status of active purchases. The receipt of these messages can be 
switched on and off using:

mobileEnablePurchaseUpdates

mobileDisablePurchaseUpdates

To create a new purchase use:

mobilePurchaseCreate productID

The productID is the identifier of the in-app purchase you created in iTunesConnect and wish to 
purchase. A purchaseID is placed in the result which is used to identify the purchase.

To query the status of an active purchase use:

mobilePurchaseState(purchaseID)

The purchaseID is the identifier of the purchase request. One of the following is returned

• initialized - the purchase request has been created but not sent. In this state additional 
properties such as the item quantity can be set.

• sendingRequest - the purchase request is being sent to the store / marketplace.

• paymentReceived - the requested item has been paid for. The item should now be delivered 
to the user and confirmed via the mobilePurchaseConfirmDelivery command.

• complete - the purchase has now been paid for and delivered

• restored - the purchase has been restored after a call to mobileRestorePurchases. The 
purchase should now be delivered to the user and confirmed via the 
mobilePurchaseConfirmDelivery command.

• cancelled - the purchase was cancelled by the user before payment was received

• error - An error occurred during the payment request. More detailed information is available 
from the mobilePurchaseError function

To get a list of all known active purchases use:

mobilePurchases()

It returns a return-separated list of purchase identifiers, of restored or newly bought purchases 
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which have yet to be confirmed as complete.

Before sending an your purchase request using the mobilePurchaseSendRequest, you can 
configure aspects of it by setting certain properties. This is done using:

mobilePurchaseSet purchaseID, property, value

The parameters are as follows:

• purchaseId - the identifier of the purchase request to be modified

• property - the name of the property to be set

• value - the value to set the property to

Properties which can be set include:

• quantity - specifies the quantity of the in-app purchase to buy (default 1)

As well as setting properties, you can also retrieve them using:

mobilePurchaseGet(purchaseID, property)

The parameters are as follows:

• purchaseID - the identifier of the purchase request

• property - the name of the purchase request property to get

Properties which can be queried include:

• quantity - amount of item purchased

• productID - identifier of the purchased product

• purchaseDate - date the purchase / restore request was sent

• transactionIdentifier - the unique identifier for a successful purchase / restore

• receipt - block of data that can be used to confirm the purchase from a remote server with 
the itunes store

• originalPurchaseDate - for restored purchases - date of the original purchase

• originalTransactionIdentifier - for restored purchases - the transaction identifier of the 
original purchase

• originalReceipt - for restored purchases - the receipt for the original purchase

Once you have created and configured your purchase you can send it to the AppStore to start the 
purchase using:

mobilePurchaseSendRequest purchaseID

Here, purchaseID is the identifier of the purchase request.  This command should only be called on 
a purchase request in the 'initialized' state.

Once you have sent your purchase request and it has been confirmed you can then unlock or 
download new content to fulfil the requirements of the in-app purchase. You must inform the 
AppStore once you have completely fulfilled the purchase using:

mobilePurchaseConfirmDelivery purchaseID
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Here, purchaseID is the identifier of the purchase request.

mobilePurchaseConfirmDelivery should only be called on a purchase request in the 
'paymentReceived' or 'restored' state. If you don’t send this confirmation before the app is closed, 
purchaseStateUpdate messages for the purchase will be sent to your app the next time updates are 
enabled by calling the mobileEnableUpdates command.

To instruct the AppStore to re-send notifications of previously completed purchases use: 

mobileRestorePurchases

This would typically be called the first time an app is run after installation on a new device to  
restore any items bought through the app.

To get more detailed information about errors in the purchase request use:

mobilePurchaseError(purchaseID)

The purchaseID is the identifier of the purchase request. It returns the error information for 
purchase requests in the "error" state.

Messages

The AppStore sends purchaseStateUpdate messages to notifies your app of any changes in state to 
the purchase request. These messages continue until you notify the AppStore that the purchase is 
complete or it is cancelled.

purchaseStateUpdate purchaseID, state

The state can be any one of the following:

• initialized - the purchase request has been created but not sent. In this state additional 
properties such as the item quantity can be set.

• sendingRequest - the purchase request is being sent to the store / marketplace

• paymentReceived - the requested item has been paid for. The item should now be delivered 
to the user and confirmed via the mobilePurchaseConfirmDelivery command

• complete - the purchase has now been paid for and delivered

• restored - the purchase has been restored after a call to mobileRestorePurchases. The 
purchase should now be delivered to the user and confirmed via the 
mobilePurchaseConfirmDelivery command

• cancelled - the purchase was cancelled by the user before payment was received

• error - An error occurred during the payment request. More detailed information is available 
from the mobilePurchaseError function

iOS Native Controls

Low-level support has been added for creating and manipulating some native iOS controls (views). 
There are generic set of commands and functions for creating and configuring certain UIView sub-
classes which then layer above the currently displayed stack.

At present, there is an implementation for the UIWebView control (browser) and for the 
UIScrollView control (scroller).
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To create a native control use:

iphoneControlCreate controlType, [ name ]

Where controlType is the type of control you wish to create – either "browser" or "scroller" and 
name is an optional string to use to identify the control in the other functions. The name must be 
unique amongst all existing controls and cannot be an integer. The unique (numeric) id for the new 
control is returned in the result.

To destroy a native control use:

iphoneControlDelete idOrName

Where idOrName is the numeric id returned by iphoneControlCreate, or the name of the control if 
provided.

A list of all native controls currently in existence can be fetched using the iphoneControls() 
function. This returns a return-delimited list of control names or ids. Where a control has a name 
that is used, otherwise its id is used.

Once such a control has been created, you can configure it using:

iphoneControlSet idOrName, property, value

Where

• idOrName is the numeric id returned by iphoneControlCreate, or the name of the control if 
provided.

• property is the name of the property to change

• value is the value of the property to change to

Properties can also be read by using iphoneControlGet(id, property).

Control specific behavior can be invoked by using:

iphoneControlDo idOrName, action, ...

Where action is what is to be done, and the parameters are action/control specific.

While in the context of a message that has been dispatched from a native control, you can use the 
iphoneControlTarget() function to fetch the name (or id, if no name is set) of the control that sent 
the message.

In general, any messages dispatched by the native control will be sent to the object containing the 
script which created it, this also works correctly with behaviors – messages being sent to the object 
referring to the behavior, and not the behavior's object.

All controls (UIView)

All native controls are descendants of the UIView class and therefore inherit a common set of 
properties and actions.

Properties

id read-only The unique (integer) id of the control.

name read-only The unique name of the control if one was provided at creation time, 
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empty otherwise.

rect read/write The bounds of the control, relative to the top-left of the card.

visible read/write Set to true or false to determine whether the control should be 
displayed.

opaque read/write Set to false if the control should be rendered with transparency. In 
particular, set this control to true if you set a backgroundColor that is 
not fully opaque.

alpha read/write Set to a value between 0 and 255 to blend the control with any 
controls underneath it.

backgroundColor read/write Set to either a standard color name, or a string of the form 
red,green,blue or red,green,blue,alpha. Where the components are 
integers in the range 0 to 255.

Browser control – UIWebView

A UIWebView control is created using a control type of "browser". For full details of what the 
UIWebView control is capable of, and background about it see the iOS reference document.

Example: You can find a simple stack using the native browser control features in the IDE  
resources folder (open using the Help > Example Stacks and Resources menu item). The stack can  
be found at: Mobile Examples/Browser Example.livecode

Properties

url read/write The url to be loaded into the web-view.

autoFit read/write Set to true or false to determine whether the page will be scaled to fit 
the rect of the control (wraps the scalesPageToFit property of 
UIWebView).

canAdvance read-only Returns true if there is a next page in the history (wraps the 
canGoForward property of UIWebView).

canRetreat read-only Returns true if there is a previous page in the history (wraps the 
canGoBack property of UIWebView).

delayRequests read/write Set to true to cause the loadRequest message to be sent.

Note that in this mode, web-pages that trigger sub-document loads 
(such as those containing iframes) will not load correctly.

dataDetectorTypes read/write Use this property to specify the types of data that should be 
automatically converted to clickable URLs in the web-view.

It is specified as a comma-delimited list of one or more of the 
following values:

• phone number

• calendar event (iOS4.0+)

• link
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• address (iOS4.0+)

(this property wraps the dataDetectorTypes property of UIWebView).

allowsInlinePlayba
ck

read/write Set to true if the web-view should allow media files to be played 
'inline' in the page (wraps the allowsInlineMediaPlayback property 
of the UIWebView).

Note that this property is only available on iOS4.0 and later 

mediaPlaybackReq
uiresUserAction

read/write Set to false to allow media files to play automatically in the web-
view (wraps the mediaPlaybackRequiresUserAction property of the 
UIWebView).

Note that this property is only available on iOS4.0 and later.

scrollingEnabled read/write Whether or not the browser can be scrolled (boolean).

canBounce read/write Determines whether the scroller will 'bounce' when it hits the edge of 
the contentRect (boolean)

Actions

iphoneControlDo id, "advance"

Move forward through the history (wraps the goForward method of UIWebView).

iphoneControlDo id, "retreat"

Move backward through the history (wraps the goBack method of UIWebView).

iphoneControlDo id, "reload"

Reload the current page (wraps the reload method of UIWebView).

iphoneControlDo id, "stop"

Stop loading the current page (wraps the stopLoading method of UIWebView).

iphoneControlDo id, "load", baseUrl, htmlText

Loads as page consisting of the given htmlText with the given baseUrl (wraps the 
loadHtmlString method of UIWebView).

iphoneControlDo id, "execute", script

Evaluates the given JavaScript script in the context of the current page (wraps the 
stringByEvaluationJavaScriptFromString method of UIWebView).

Messages

browserStartedLoading url

Sent when the given url has started to load (sent in response to the webViewDidFinishLoad 
delegate method).

browserFinishedLoading url

Sent when the given url has finished loading (sent in response to the webViewDidStartLoad 
delegate method).
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browserLoadRequest url, type

Sent when the given url has been requested. The reason for the request is specified in type 
which can be one of click, submit, navigate, reload, resubmit or other.

Not passing the message will cause the load request to not go ahead.

This message is only sent if delayRequests has been set to true. Note that delaying requests 
can cause web-pages that load pages into sub-documents to not work correctly.

(This message is sent in response to the webView:shouldStartLoadWithRequest: delegate 
method).

browserLoadFailed url, error

Sent when the given url fails to load (sent in response to the 
webView:didFailLoadWithError: delegate method).

browserLoadRequested url, type

Sent when the given url has been requested. The reason for the request is specified in type 
which can be one of click, submit, navigate, reload, resubmit or other.

If delayRequests has been set to true, this message will only be sent if the 
browserLoadRequest message has been passed.  If  delayRequests is false, this message 
will always be sent.

(This message is sent in response to the webView:shouldStartLoadWithRequest: delegate 
method).

Scroller control – UIScrollView

A UIScrollView control is created using a control type of "scroller". For full details of what the 
UIScrollView control is capable of, and background about it see the iOS reference document.

Rather than act as a container for other controls, the 'scroller' is intended to be used as an overlay on 
part of the screen you wish to interact with the proper iOS scrollbars. By responding to the various 
scroller messages, you can move LiveCode controls or set the appropriate scroll properties of group 
and fields to get a native scrolling effect.

Example: You can find a simple stack using the native scroller control features in the IDE resources  
folder (open using the Help > Example Stacks and Resources menu item). The stack can be found 
at: Mobile Examples/Scroller Example.livecode

Properties

contentRect read/write The rectangle over which the scroller scrolls. This is distinct from the 
scroller's rect, and is essentially the minimum/maximum values of 
the scroll properties (adjusted for the size of the scroller).

This is a comma-separated list of four integers, describing a 
rectangle.

hScroll read/write The horizontal scroll offset.

This is an integer value ranging between the left and right of the 
contentRect, adjusting appropriately for the size of the scroller (i.e. 
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contentRect.left to contectRect.right – rect.width).

vScroll read/write The vertical scroll offset.

This is an integer value ranging between the top and bottom of the 
contentRect, adjusting appropriately for the size of the scroller (i.e. 
contentRect.top to contectRect.bottom – rect.height).

canBounce read/write Determines whether the scroller will 'bounce' when it hits the edge of 
the contentRect (maps to the UIScrollView bounces property).

This is a boolean value.

canScrollToTop read/write Determines whether a touch on the status bar causes the scroll to 
scroll to the top (maps to the UIScrollView scrollsToTop property).

This is a boolean value.

canCancelTouches read/write Determines whether the scroller is allowed to cancel an touch that 
has been passed through to the underlying controls when it thinks its 
a scroll gesture (maps to the UIScrollView 
canCancelContentTouches property).

This is a boolean value.

delayTouches read/write Determines whether the scroller delays passing on touch-down 
events until it has determined whether it is the start of a scroll gesture 
or not (maps to the UIScrollView delaysContentTouches property).

This is a boolean value.

pagingEnabled read/write Determines whether scrolling stops on multiples of the scroller's 
bounds (maps to the UIScrollView pagingEnabled property).

This is a boolean value.

decelerationRate read/write Determines the rate at which scrolling decelerates when a finger is 
lifted (maps to the UIScrollView decelerationRate property).

This can be either normal, fast or a real number.

indicatorStyle read/write Determines the style of indicators to display (maps to the 
UIScrollView indicatorStyle property).

This can be one of default, white or black.

indicatorInsets read/write Determines how far from the edge of the scrollers bounds, the 
indicators are inset (maps to the UIScrollView scrollIndicatorInsets 
property).

This is a comma-separated list of four integers, describing the left, 
top, right and bottom inset distances.

scrollingEnabled read/write Determines whether touches on the scroller cause scrolling (maps to 
the UIScrollView scrollEnabled property).

This is a boolean value.

hIndicator read/write Determines whether the horizontal indicator should be displayed 
when scrolling (maps to the UIScrollView 
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showsHorizontalScrollIndicator property).

This is a boolean value.

vIndicator read/write Determines whether the vertical indicator should be displayed when 
scrolling (maps to the UIScrollView showsVerticalScrollIndicator 
property).

This is a boolean value.

lockDirection read/write Determines whether scrolling is locked to the initial direction a drag 
occurs in (maps to the UIScrollView directionalLockEnabled 
property).

This is a boolean value.

tracking read-only Returns true if the scroller is monitoring a touch for the start of a 
scroll action (maps to the UIScrollView tracking property).

This is a boolean value.

dragging read-only Returns true if the scroller is currently performing a scroll action 
(maps to the UIScrollView dragging property).

This is a boolean value.

decelerating read-only Returns true if the scroll is currently decelerating after a scroll action 
(maps to the UIScrollView decelerating property).

This is a boolean value.

Actions

iphoneControlDo id, "flashScrollIndicators"

Makes the scroll indicators flash momentarily.

Messages

scrollerBeginDecelerate

This message is sent when scrolling is about to start decelerating.

scrollerEndDecelerate

This message is sent when scrolling has finished decelerating.

scrollerScrollToTop

This message is sent when the scroller is scrolled to top by touching the status bar.

scrollerBeginDrag

This message is sent when a scroll initiating drag is started.

scrollerEndDrag didDecelerate

This message is sent when a scroll initiating drag is finished.

scrollerDidScroll hScroll, vScroll

This message is sent when the scroll properties of the scroller have changed.
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Player control – MPMoviePlayerController

An MPMoviePlayerController control is created using a control type of "player". For full details of 
what the MPMoviePlayerController control is capable of, and background about it see the iOS 
Reference Document.

On iOS versions < 4.2 you can only have a single MPMoviePlayerController instance in existance 
at once. Therefore, on these iOS versions you can only create a single native player control at any 
one time, and while one is present you cannot use the play video command to play fullscreen 
videos.

On iOS version >= 4.2, while you can have multiple MPMoviePlayerController instances (and thus 
multiple native player controls) simultaneously, only a single one can be playing at any one time.

Note: The player control is only available on iOS 4.0 and later.

Properties

filename read/write The filename of URL of the media to play.

Setting the filename of the player automatically 'prepares' the movie 
for playback.

fullscreen read/write Determines whether the player's content is played fullscreen.

This is a boolean value.

preserveAspect read/write Determines whether the player's content should preserve its aspect 
ratio when scaled to fit within the control's bounds.

This is a boolean value.

showController read/write Determines whether the controller will be displayed over the content.

This is a boolean value.

useApplicationAu
dioSession

read/write Determines whether the movie uses a system-supplied audio session 
or not (maps to the native useApplicationAudioSession property).

This is a boolean value.

shouldAutoplay read/write Determines whether the playback of network-based content begins 
automatically when there is enough buffered data to ensure 
uninterrupted playback (maps to the native shouldAutoplay 
property).

This is a boolean value.

looping read/write Determines whether the playback of the movie should loop 
indefinitely.

This is a boolean value.

allowsAirPlay read/write Determines whether a control should be presented to allow the user 
to choose AirPlay-enabled hardward for playback (maps to the native 
allowsAirPlay property).

This is a boolean value.
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Note: This property is only supported on iOS 4.3 and later.

duration read-only The duration of the movie, measured in milliseconds (maps to the 
native duration property).

If the duration of the movie is not yet known, 0 is returned. If the 
duration is subsequently determined, an appropriate 
playerPropertyAvailable message is sent and the property updated.

This is an integer value.

playableDuration read-only The amount of currently playable content, measured in milliseconds 
(maps to the native playableDuration property).

This is an integer value.

currentTime read/write The current position of the playhead, measured in milliseconds 
(maps to the native currentPlaybackTime property).

This is an integer value.

startTime read/write The position at which playback should start, measured in 
milliseconds (maps to the native initialPlaybackTime property).

This is an integer value.

endTime read/write The position at which playback should end, measured in milliseconds 
(maps to the native endPlaybackTime property).

This is an integer value.

playRate read/write The current playback rate for the player (maps to the native 
currentPlaybackRate property).

This represents a multiplier for the default playback rate of the 
current content. A value of 0.0 indicates playback is stopped, while a 
value of 1.0 indicates normal speed. Positive values indicate forward 
playback, while negative values indicate reverse playback.

This is real value.

loadState read-only The network load state of the player (maps to the native loadState 
property).

This is a comma-delimited list of zero or more of the following:

• playable – enough data is available to start playing, but it 
may run out before playback finishes

• playthrough – enough data has been buffered for playback to 
continue uninterrupted

• stalled – buffer of data has stalled and playback may pause 
automatically if the player runs out of data.

This is a string value.

playbackState read-only The current playback state of the player (maps to the native 
playbackState property).
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This is one of the following values:

• stopped – playback is stopped and will commence from the 
beginning when started.

• playing – playback is current underway

• paused – playback is paused and will resume from the point it 
was paused

• interrupted – playback is temporarily interrupted, perhaps 
because the buffer ran out of content

• seeking forward – the player is currently seeking towards the 
end of the movie

• seeking backward – the player is currently seeking towards 
the beginning of the movie

naturalSize read-only The raw size of a video frame in pixels (maps to the native 
naturalSize property).

This is a comma-separated list of two integers, the first is the width, 
the second is the height.

Actions

iphoneControlDo id, "play"

Start playing the content of the player.

iphoneControlDo id, "pause"

Pause the content at the current position.

iphoneControlDo id, "prepareToPlay"

Make the content ready to play, but don't actually commence playback.

iphoneControlDo id, "stop"

Stop playing the content of the player.

iphoneControlDo id, "begin seeking forward"

Start seeking forward through the content of the player.

iphoneControlDo id, "begin seeking backward"

Start seeking backward through the content of the player.

iphoneControlDo id, "end seeking"

Stop seeking through the content of the player.

iphoneControlDo id, "snapshot" | "snapshot exactly", time, [ maxWidth, maxHeight ]

Take a snapshot of the movie at time milliseconds from the beginning. If the exactly form is 
specified the frame produced will be as close as possible to time, otherwise the nearest key-
frame will be used.

If maxWidth and maxHeight are specified, the snapshot will be scaled to fit within a rectangle 
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of that size but preserving the frame's aspect ratio.

The snapshot is made available as a new image object cloned from the templateImage, with 
data in the format as specified by the global paintCompression property.

Messages

playerPropertyAvailable propertyName

Enough data has become available to make the given propertyName available. Properties that 
might not be available immediately are duration and naturalSize.

playerProgressChanged

The loadState property has changed value.

playerEnterFullscreen

The player has entered full screen mode.

playerLeaveFullscreen

The player has left full screen mode.

playerMovieChanged

The content of the player has changed.

playerFinished

The content has finished playing through.

playerStopped

The content finished playing through due to a user exit.

playerError

The content finished playing due to an error.

Input control – UITextField

A UITextField control is created using a control type of "input". For full details of what the 
UITextField control is capable of, and background about it see the iOS reference document.

The input control allows the editing of a single line of text, with the 'return' key ending editing and 
allowing the application to perform an appropriate action.

Properties

text read/write The content of the control (maps to the native text property).

This is a string value.

unicodeText read/write The content of control encoded as UTF-16 (maps to the native text 
property).

This is a binary value.

textColor read/write The color to use for the text in control (maps to the native textColor 
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property).

This is either a standard color name, or a string of the form 
red,green,blue or red,green,blue,alpha. Where the components are 
integers in the range 0 to 255.

fontName read/write The name of the font to use for text in the control.

This is a string value.

fontSize read/write The size of the font to use for text in the control.

This is an integer value.

textAlign read/write The alignment to use for text in the control (maps to the native 
textAlignment property).

This is one of left, center or right.

autoFit read/write Determines whether the size of the text is scaled so that it fits within 
the width of the control down to the size specified by the 
minimumFontSize property (maps to the native 
adjustsFontSizeToFitWidth property).

This is a boolean value.

minimumFontSize read/write The minimum size text should be shrunk to to satisfy autoFit 
requirements (maps to the native minimumFontSize property).

This is an integer value,

autoClear read/write Determines whether the control is emptied automatically when 
editing begins (maps to the native clearsOnBeginEditing property).

clearButtonMode read/write The display mode of the standard 'clear' button overlay (maps to the 
native clearButtonMode property).

This is one of the following:

• never – never display the clear button

• while editing – only display the clear button while editing

• unless editing – only display the clear button when not 
editing

• always – always display the clear button

borderStyle read/write The type of border to draw around the control (maps to the native 
borderStyle property).

This is one of the following:

• none – do not draw a border

• line – draw a thin line around the control

• bezel – draw a bezel-style border around the control

• rounded – draw a rounded rectangle style border around the 
control
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editing read-only Indicates whether the control is currently being edited or not (maps 
to the native editing property).

This is a boolean value.

autoCapitalization
Type

read/write Determines when the shift-key is automatically enabled (maps to the 
native autocapitalizationType property).

This is one of the following:

• none – the shift-key is never automatically enabled

• words – the shift-key is enabled at the start of words

• sentences – the shift-key is enabled at the start of sentences

• all characters – the shift-key is enabled at the start of each 
character

autoCorrectionTyp
e

read/write Determines whether auto-correct behavior should be enabled (maps 
to the native autocorrectionType property).

This is one of the following:

• default – use the appropraite auto-correct behavior for the 
current script system.

• no – disable auto-correct behavior

• yes – enable auto-correct behavior 

manageReturnKey read/write Determines whether the return key should be automatically enabled 
or disabled based on whether the control has content or not (maps to 
the native enablesReturnKeyAutomatically property).

This is a boolean value.

keyboardStyle read/write Determines what kind of appearance the keyboard has (maps to the 
native keyboardAppearance property).

This is one of the following:

• default – the standard keyboard appearance

• alert – the keyboard that is suitable for an alert panel 
(iPhone/iPod only)

keyboardType read/write Determines what kind of keyboard should be displayed (maps to the 
native keyboardType property).

This is one of the following:

• default – the normal keyboard

• alphabet – the alphabetic keyboard

• numeric – the numeric keyboard with punctuation

• url – the url entry keyboard

• number – the number pad keyboard
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• phone – the phone number pad keyboard

• contact – the phone contact pad keyboard

• email – the email keyboard

• decimal – the decimal numeric pad keyboard (iOS 4.1+)

returnKeyType read/write Determines what kind of return-key the keyboard should have (maps 
to the native returnKeyType property).

This is one of the following:

• default – the normal return key

• go – the 'Go' return key

• google – the 'Google' return key

• join – the 'Join' return key

• next – the 'Next' return key

• route – the 'Route' return key

• search – the 'Seach' return key

• send – the 'Send' return key

• yahoo – the 'Yahoo' return key

• done – the 'Done' return key

• emergency call – the 'emergency call' return key

contentType read/write Determines what kind of content the control contains.

This is one of the following:

• plain – plain, unstyled text

• password – plain text displayed in the standard iOS password 
style.

enabled read/write Determines whether the control is enabled or not.

This is a boolean value.

Actions

iphoneControlDo id, "focus"

Focus on the control, displaying the keyboard if necessary.

Messages

inputBeginEditing

The control has become focused and editing has commenced.

inputEndEditing
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The control has lost focus and editing has ceased.

inputTextChanged

An editing operation has taken place and the content of the control has changed.

inputReturnKey

The return key has been pressed and focus removed from the input control.

Multi-line Input control – UITextView

A UITextView control is created using a control type of "multiline". For full details of what the 
UITextView control is capable of, and background about it see the iOS reference document.

The multiline input control allows the editing of multiple lines of text, with the 'return' key ending 
each line.

The UITextView control inherits from the UIScrollView control and subsequently implements 
many of the same properties as the scroller control. For full details of what the UIScrollView 
control is capable of, and background about it see the iOS reference document.

Properties

text read/write The content of the control (maps to the native text property).

This is a string value.

unicodeText read/write The content of control encoded as UTF-16 (maps to the native text 
property).

This is a binary value.

textColor read/write The color to use for the text in control (maps to the native textColor 
property).

This is either a standard color name, or a string of the form 
red,green,blue or red,green,blue,alpha. Where the components are 
integers in the range 0 to 255.

fontName read/write The name of the font to use for text in the control.

This is a string value.

fontSize read/write The size of the font to use for text in the control.

This is an integer value.

textAlign read/write The alignment to use for text in the control (maps to the native 
textAlignment property).

This is one of left, center or right.

editing read-only Indicates whether the control is currently being edited or not (maps 
to the native editing property).

This is a boolean value.

autoCapitalization read/write Determines when the shift-key is automatically enabled (maps to the 
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Type native autocapitalizationType property).

This is one of the following:

• none – the shift-key is never automatically enabled

• words – the shift-key is enabled at the start of words

• sentences – the shift-key is enabled at the start of sentences

• all characters – the shift-key is enabled at the start of each 
character

autoCorrectionTyp
e

read/write Determines whether auto-correct behavior should be enabled (maps 
to the native autocorrectionType property).

This is one of the following:

• default – use the appropraite auto-correct behavior for the 
current script system.

• no – disable auto-correct behavior

• yes – enable auto-correct behavior 

manageReturnKey read/write Determines whether the return key should be automatically enabled 
or disabled based on whether the control has content or not (maps to 
the native enablesReturnKeyAutomatically property).

This is a boolean value.

keyboardStyle read/write Determines what kind of appearance the keyboard has (maps to the 
native keyboardAppearance property).

This is one of the following:

• default – the standard keyboard appearance

• alert – the keyboard that is suitable for an alert panel 
(iPhone/iPod only)

keyboardType read/write Determines what kind of keyboard should be displayed (maps to the 
native keyboardType property).

This is one of the following:

• default – the normal keyboard

• alphabet – the alphabetic keyboard

• numeric – the numeric keyboard with punctuation

• url – the url entry keyboard

• number – the number pad keyboard

• phone – the phone number pad keyboard

• contact – the phone contact pad keyboard

• email – the email keyboard
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• decimal – the decimal numeric pad keyboard (iOS 4.1+)

returnKeyType read/write Determines what kind of return-key the keyboard should have (maps 
to the native returnKeyType property).

This is one of the following:

• default – the normal return key

• go – the 'Go' return key

• google – the 'Google' return key

• join – the 'Join' return key

• next – the 'Next' return key

• route – the 'Route' return key

• search – the 'Seach' return key

• send – the 'Send' return key

• yahoo – the 'Yahoo' return key

• done – the 'Done' return key

• emergency call – the 'emergency call' return key

contentType read/write Determines what kind of content the control contains.

This is one of the following:

• plain – plain, unstyled text

• password – plain text displayed in the standard iOS password 
style.

enabled read/write Determines whether the control is enabled or not.

This is a boolean value.

editable read/write Determines whether the text field can be edited.  This is a boolean 
value.

dataDetectorTypes read/write Determines what types of data should be detected and automatically 
converted to clikckable URLs. 

This is a comma delimited list of none or more of the following:

• phone number
• calendar event – iOS4.0+
• link 
• address - iOS4.0+       

selectedRange read/write Determines the start index and the length of the text that is to appear 
as selected.

contentRect read only The rectangle over which the scroller scrolls. This is distinct from the 
scroller's rect, and is essentially the minimum/maximum values of 
the scroll properties (adjusted for the size of the scroller).
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This is a comma-separated list of four integers, describing a 
rectangle.

hScroll read/write The horizontal scroll offset.

This is an integer value ranging between the left and right of the 
contentRect, adjusting appropriately for the size of the scroller (i.e. 
contentRect.left to contectRect.right – rect.width).

vScroll read/write The vertical scroll offset.

This is an integer value ranging between the top and bottom of the 
contentRect, adjusting appropriately for the size of the scroller (i.e. 
contentRect.top to contectRect.bottom – rect.height).

canBounce read/write Determines whether the scroller will 'bounce' when it hits the edge of 
the contentRect (maps to the UIScrollView bounces property).

This is a boolean value.

canScrollToTop read/write Determines whether a touch on the status bar causes the scroll to 
scroll to the top (maps to the UIScrollView scrollsToTop property).

This is a boolean value.

canCancelTouches read/write Determines whether the scroller is allowed to cancel an touch that 
has been passed through to the underlying controls when it thinks its 
a scroll gesture (maps to the UIScrollView 
canCancelContentTouches property).

This is a boolean value.

delayTouches read/write Determines whether the scroller delays passing on touch-down 
events until it has determined whether it is the start of a scroll gesture 
or not (maps to the UIScrollView delaysContentTouches property).

This is a boolean value.

pagingEnabled read/write Determines whether scrolling stops on multiples of the scroller's 
bounds (maps to the UIScrollView pagingEnabled property).

This is a boolean value.

decelerationRate read/write Determines the rate at which scrolling decelerates when a finger is 
lifted (maps to the UIScrollView decelerationRate property).

This can be either normal, fast or a real number.

indicatorStyle read/write Determines the style of indicators to display (maps to the 
UIScrollView indicatorStyle property).

This can be one of default, white or black.

indicatorInsets read/write Determines how far from the edge of the scrollers bounds, the 
indicators are inset (maps to the UIScrollView scrollIndicatorInsets 
property).

This is a comma-separated list of four integers, describing the left, 
top, right and bottom inset distances.
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scrollingEnabled read/write Determines whether touches on the scroller cause scrolling (maps to 
the UIScrollView scrollEnabled property).

This is a boolean value.

hIndicator read/write Determines whether the horizontal indicator should be displayed 
when scrolling (maps to the UIScrollView 
showsHorizontalScrollIndicator property).

This is a boolean value.

vIndicator read/write Determines whether the vertical indicator should be displayed when 
scrolling (maps to the UIScrollView showsVerticalScrollIndicator 
property).

This is a boolean value.

lockDirection read/write Determines whether scrolling is locked to the initial direction a drag 
occurs in (maps to the UIScrollView directionalLockEnabled 
property).

This is a boolean value.

tracking read-only Returns true if the scroller is monitoring a touch for the start of a 
scroll action (maps to the UIScrollView tracking property).

This is a boolean value.

dragging read-only Returns true if the scroller is currently performing a scroll action 
(maps to the UIScrollView dragging property).

This is a boolean value.

decelerating read-only Returns true if the scroll is currently decelerating after a scroll action 
(maps to the UIScrollView decelerating property).

This is a boolean value.

Actions

iphoneControlDo id, "focus"

Focus on the control, displaying the keyboard if necessary.

iphoneControlDo id, "scrollToVisibleRange"

Ensures the given text range is visible in the view by changing the scroll of the field.
• rangeStart - The start index of the text that is to be made visible. 
• rangeLength - The length of the text that is to be made visible.  

Messages

inputBeginEditing

The control has become focused and editing has commenced.

inputEndEditing

The control has lost focus and editing has ceased.

inputTextChanged
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An editing operation has taken place and the content of the control has changed.

inputReturnKey

The return key has been pressed and focus removed from the input control.

scrollerBeginDecelerate

This message is sent when scrolling is about to start decelerating.

scrollerEndDecelerate

This message is sent when scrolling has finished decelerating.

scrollerScrollToTop

This message is sent when the scroller is scrolled to top by touching the status bar.

scrollerBeginDrag

This message is sent when a scroll initiating drag is started.

scrollerEndDrag didDecelerate

This message is sent when a scroll initiating drag is finished.

scrollerDidScroll hScroll, vScroll

This message is sent when the scroll properties of the scroller have changed.
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Miscellaneous Information

Encryption Compliance – HTTPS

Any applications using encryption need to declare this fact to Apple when binaries are submitted in 
iTunesConnect.

Use of the HTTPS protocol counts as using encryption and as such you must answer 'Yes' to the 
relevant question when prompted to do so. This may result in you needing to go through the CCATS 
approval process for your application depending on how the encryption is used.

A useful blog post on this matter can be found here: http://blog.theanimail.com/iphone-encryption-
export-compliance-for-apps.

For reference, the iOS engine currently utilizes the iOS built-in APIs for HTTPS.

Note: It is your responsibility to ensure that you comply with any and all requirements with regards  
encryption usage – it is not something that can be done 'once' for the iOS engine as it (alone) does  
not constitute an application nor does it (alone) actually utilize encryption, it merely provides the  
means to do so.

80

http://blog.theanimail.com/iphone-encryption-export-compliance-for-apps
http://blog.theanimail.com/iphone-encryption-export-compliance-for-apps


Revision 97 – 2013-05-29

Noteworthy Changes

Scrolling problems (R18)

In previous builds, the browser, scroll and photo-picker features suffered a serious bug which 
caused scrolling and related actions to stick/not-decelerate and generally not work correctly. These 
problems have been resolved in this release.

Browser loadRequest changes (R18)

Due to technical limitations it has been necessary to change the loadRequest callback feature of the 
browser native control.

The loadRequest message is now only sent if the delayRequests property has been set to true (it is 
false by default).

When using the browser with delayRequests set to true, please bear in mind that any loads into sub-
documents will end up being loaded into the main view meaning many websites will not function 
correctly.

With delayRequests set to false, websites will load as they should however you will not be able to 
prevent load requests from taking place.

URL progress parameter order (R18)

In previous builds the parameter order of the urlProgress message was inconsistent with both other 
callbacks in the iOS engine, and the libUrl status callback.

This has been rectified in this build. The urlProgress message now has the url as the first parameter 
rather than the second.

Scripts that make use of this feature will need to be updated and swap the first two parameters 
around.

Initial orientation handling (R20)

The engine will now read the initial orientation and supported orientations from the plist on startup,  
and uses these values to initialize the 'allowed orientations' and to ensure the initial orientation is as  
expected.

For more details see the orientation handling section.

Font metrics (R20)

The vertical metrics (ascent/descent) have been adjusted slightly in this release to make them more  
consistent with those on the Mac desktop. Assuming the chosen fonts match, then text layout on 
screen in the IDE will now be much closer, if not identical, to that in the simulator or on a device.

Out-of-bounds scrolling (R20)

The properties unboundedHScroll and unboundedVScroll have been added to control the 'out-of-
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bounds' scrolling feature of group objects. If you are using this feature to provide the 'bounce' effect 
when using a scroller control in conjunction with a group, then you must now explicitly set the 
appropriate properties on the group. (Previously the behavior was always on).

Screen metrics (R25)

The screenRect and working screenRect properties have been changed to reflect the current 
orientation of the device.

Examples:

• on an iPad for which the current orientation is landscape and the status bar hidden the 
properties will both return (0, 0, 1024, 768).

• on a non-Retina iPhone in portrait with the status bar displayed, screenRect will be (0, 0, 
320, 480) and working screenRect will be (0, 20, 320, 480).

• on a Retina iPhone in landscape with the status bar displayed and device resolution turned 
on, screenRect will be (0, 0, 640, 960) and working screenRect will be (0, 40, 640, 960).

This change has been made as it is more consistent with transparent handling of orientation and 
improves consistency with the now implemented screen snapshot feature.

Multi-channel sound playback (R29)

The behavior of iphonePlaySoundOnChannel has been adjusted in the case where there is no 
sound currently scheduled, and the next is specified. This usage will now cause the sound to be 
scheduled to play 'now', but instead of playing the channel will be prepared and then immediately 
paused.

The previous behavior can be obtained by doing iphoneResumePlayingOnChannel immediately 
after the play command, as this has no effect if the channel is already playing.

'Exits on Suspend' support (R30)

The support for changing the value of the 'Exits on Suspend' plist flag in standalone settings has 
been removed and the property will always be YES. This flag was never directly supported and 
having it set to NO causes the LiveCode engine to work incorrectly after it is resumed. Support will 
be reintroduced in due course, when the issues related to its use are resolved.

Engine version integration (4.6.1-dp-2)

The iOS engine branch has been integrated with the main (desktop) engine branch. This brings all 
the fixes and improvements made to the desktop engine since 4.0 to the iOS engine.

In particular, all platform non-specific syntax and improvements is now available to iOS (where it  
makes sense) and the iOS externals (revZip, revXML and dbSqlite) have the same set of 
functionality.

Note: Some new features added since 4.0 to the desktop engine still have to be ported across. This  
includes public key cryptography and printing to pdf – these are planned for a future release.
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Engine internal structure update (5.5.2-dp-1)

From 5.5.2, the iOS engine's internal structure has been changed. Unfortunately this means that all 
existing externals written for that platform must be updated. [ Note that externals updated for 5.5.2 
will still load and run in 5.5.1 ].

The engine now runs using two threads in a co-operative fashion - i.e. only one is executing at a 
time. The first (main/system) thread is where all system related calls are made - for example,  
manipulating UIViews or any other system-provided classes. The second (engine/script) thread is 
where code that executes scripts run.

The reason for this separation is the existing of 'wait' - the ability to block an executing handler 
while events are processed. On iOS, in order to process events, the system thread must return to the 
core event loop which iOS manages; however waiting requires running the event loop from nested 
calls. To make this work, when the engine thread invokes a wait, the engine jumps to the system 
thread, jumping back when an event occurs.

Simulator support (5.5.3-rc-1)

As of 5.5.3-rc-1, LiveCode has dropped support for the 4.0, 4.1 and 4.2 simulators.  See “Choosing 
an SDK”.

83



Revision 97 – 2013-05-29

Change Logs and History

Engine Change History

pre-alpha-3 (2010-03-04) MW Initial version.
pre-alpha-4 (2010-03-05) MW Bold and italic font styles now honoured in font selection

Image picker no longer 'sticks' after selection
GIF images now display
Max width and height parameters added to iphonePickPhoto
Import snapshot no longer crashes

pre-alpha-5 (2010-03-11) MW Unicode text will now display
Umlauts and other non-ASCII characters will now display
Return key now causes a newline in fields
Crashes when changing image content have been fixed
Export snapshot now makes images with the correct colors
Rotating a non-masked images no longer causes corruption of the 
image

pre-alpha-6 (2010-03-18) MW Answer command now returns its the chosen button in 'it'
Added support for detecting device orientation
Added support for setting interface orientation
Added basic support for CoreLocation
Refined control hit-test for touch handling so disabled controls 
are not targetted.
mouseLoc now reports the correct y-coordinate
Added support for mail composition/sending
Corrected file handling functions interpretation of '/'
Added support for specialFolderPath()
Fixed problem with incorrect display of animated GIFs

pre-alpha-7 (2010-03-29) MW Added basic support for 'play <soundfile>'
Added support for 'beep' system alert
Added support for 'launch url'
Added support for 'the fontNames' and 'the fontStyles'
Added support for 'uniEncode' and 'uniDecode'
Added support for system date/time
Fixed issue with engine not picking up 'Oblique' fonts for italic 
style
Fixed issue with unicode text not displaying in fields on load
Added support for 'engine' in 'specialFolderPath'

pre-alpha-8 (2010-04-12) MW Added support for targeting iPad
Added support for 'the systemVersion'
Added support for 'the machine'
Added support for 'the processor'
Fixed problem with orientation returning portrait mispelt
Improved responsiveness of image picker
Added support for iphonePickPhoto on the iPad

pre-alpha-10 (2010-08-12) MW Added support for 'play video <filename/url>'
Fixed issues with support for environment properties (the 
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systemVersion, the processor, etc.)
Added support for 'the sound'
Fixed issue with garbage being returned from specialFolderPath 
in some cases.
Added support for 'libUrlDownloadToFile'

pre-release-14 (2010-11-10) MW Added support for 'load url'
Added support for 'post url'
Added support for status bar configuration
Added support for building for appstore/ad-hoc
Added support for visual effects
Fixed issue with iphonePickPhoto crashing on iOS4
Fixed issue with some PNGs not displaying correctly
Fixed issue with graphic effects have inverted colors
Fixed issue with black screen appearing on startup
Fixed issues with landscape orientation mode

release-17 (2010-12-01) MW Added support for browser native control
Added support for scroller native control
Added support for querying current locale and preferred 
languages
Added support for 'movieTouched' message while movie playing
Added supoprt for 'play stop' command while movie playing
Added support for building iOS apps with evaluation licenses
Added support for modal pickwheel, and hooked into option 
menus
Changed support for orientation handling to leverage built-in iOS 
mechanism
Fixed various glitches with movie playback
Fixed issue with entering accented characters with the iOS 
keyboard
Fixed issue with visual effects not working correctly in non-
portrait orientation
Fixed issue with 'the mouseColor' causing a crash

release-18 (2010-12-10) MW Added support for opaque, alpha and backgroundColor 
properties to all native controls.
Added ability to upload to FTP.
Added support for ask question/ask password
Added delayRequests property to browser to control loadRequest 
message.
Changed urlProgress callback parameter order for consistency
Fixed bug with movie controller not working
Fixed bug with the browser load action not working
Fixed bug with scroller, browser and photo-picker not scrolling 
correctly.
Fixed decelerating property name
Fixed common native control property getting (rect, visible etc.)
Fixed bug with browser not loading some pages correctly
Fixed bug with iphonePickPhoto not returning correct value

release-19 (2010-12-16) MW Added support for keyboardActivated and keyboardDeactivated.
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Improved 'pick' and option menu display for iPad
Hooked URL operation timeouts to the socketTimeout
Fixed bug with pick views not respecting orientation properly

release-20 (2010-12-19) MW Added support for setting keyboard type and return style
Added support for unboundedHScroll and unboundedVScroll 
propertie.
Fixed return value of iphonePick command
Fixed alignment of ask dialog when no title
Fixed return value of ask dialog when nothing is entered
Fixed answer and other such commands not working in initial 
preOpenStack/preOpenCard/openStack/openCard
Fixed issue with nested answer/ask dialogs
Fixed issue with nested orientationChanged messages
Revised and improved initial orientation handling
Made nomenclature for device and interface orientation 
consistent
Improved vertical font metrics consistency with the desktop 
(Mac) engine.
Made round rectangle corner radius consistent with desktop 
engine.

release-21 (2010-12-21) MW Added support for the httpHeaders.
Added experimental support for multi-channel sound.
Fixed issue with iphoneControl commands not working with a 
string id.
Fixed issue with pick-wheel not scrolling correctly.
Fixed issue with pick-wheel crashing after multiple shows.
Fixed issue with option menu popup not sending menuPick.

release-22 (2011-01-07) MW Added support for looping video (iOS 3.2 and later)
Fixed issue with stackfiles not saving on iOS
Fixed crash on startup when running on iOS 3.1.3 device
Fixed movieTouched message handling on iOS 3.1.3
Further improved vertical font metrics consistency with the 
desktop (Mac) engine

release-23 (2011-01-14) MW Added support for remaining UIWebView properties
Added ability to determine display scale (retina, or non-retina)
Added support for visual effects in sub-regions
Fixed issue with type command and accented chars (9294)
Fixed issue with pick-wheel causing anomalous keyboard 
behavior (9295)
Multi-channel sound is no longer considered experimental

release-24 (2011-01-24) MW Added support for revZip, revXML and dbSQlite externals
Added support for configuring the iOS 'idleTimer'
Changed iPad popup lists to dismiss after select
Fixed issue with iphonePickPhoto not working correctly with 
camera import (9303)
Fixed issue with export/import snapshot not working correctly 
(9307)
Fixed issue with interface orientation on startup (9314)
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Fixed issue with 'the files' and 'the folders' being urlEncoded
release-25 (2011-01-30) MW Added support for import/export snapshot from rect (9343)

Added support fetching camera info: iphoneCameraFeatures()
Added support for picking from specific camera
Added support for different background colors to flip visual 
effect
Added support for listing native controls: iphoneControls()
Added support for creating named native controls
Added support for clearing pending interactions with 
iphoneClearTouches
Change screenRect properties to take into account orientation.

release-26 (2011-02-04) MW Fixed issue with movie playback with controller on 3.2 (9319)
Fixed issue with topLeft of stack being incorrect (9371)

release-27 (2011-02-08) MW Fixed issue with sound when movie 'shrunk' on 3.2 (9319)
release-28 (2011-03-04) MW Added support for system identifier: iphoneSystemIdentifier()

Improved ask dialog implementation (9379)
Fixed issue with pixel properties requiring open stack (9419)
Fixed issue with non-breaking spaces causing compile issues

release-29 (2011-03-09) MW Added experimental support for 'player' native control
Added experimental support for 'input' native control
Added experimental support for network reachability tracking
Added experimental support for playing sections of video
Added support for preparing a sound on a channel without 
playing
Added support for pausing and resuming a sound channel
Added support for querying a sound channel's status
Fixed issue with rotation and movie playback (9409)

release-30 (2011-03-13) MW Added experimental support for improved email composition
Fixed issue with stack positioning after movie playback (9409)

release-31 (2011-03-15) MW After further testing and consideration, removed 'experimental' 
status from native player control.
After further testing and consideration, removed 'experimental' 
from improved email composition support.
Improved interoperability of play video and native player control 
on iOS < 4.2.

release-32 (2011-03-16) MW Made all iphoneComposeMail arguments are optional.
Tweaked iphonePick to use checkmark on iPad.
Fixed bug with iphonePick not returning 0 if nothing selected.

release-33 (2011-03-17) MW Support for pattern fills has been implemented.
release-34 (2011-03-18) MW After further testing and consideration, removed 'experimental' 

status from native input control.
Improved iphonePickPhoto on iPad to make it display relative to 
the target and allow orientation changes.
Added 'inputReturnKey' message to native input control.
Added 'enabled' property to native input control.
Fixed issue with orientation lock when displaying fullscreen 
movies from UIWebViews and native player controls.
Fixed issue with stack view not being placed corrected after 
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returning from fullscreen movies.
Fixed issue with opaque property not taking effect properly.
Fixed issue with streaming playback not working player control.
Fixed issue with player control not preparing movies after 
changing filename.
Changed player loadState property to a set, as it should be.

release-35 (2011-03-21) MW Fixed memory leak in backgroundPattern support.
Fixed crash when doing 'ask' without a 'titled' clause.
Fixed file access mode when doing 'open file' with no mode.

release-36 (2011-03-25) MW Fixed issue with iphonePick initial index not working on iPhone
release-37 (2011-03-31) MW Added support for 'library' to specialFolderPath.

Added support for two different modes to iphonePick
Fixed bug with iphoneClearTouches crashing in some cases
Fixed bug with iphoneClearTouches preventing mouse messages 
in some cases.
Fixed bug with the last opaque group always grabbing touch 
messages.

4.6.1-dp-2 (2011-04-06) MW Integration of iOS engine branch into desktop.
Added support for dbMysql database driver
Added support for native control coords at native resolution.
Added support for 'style' parameter to iphonePick
Added support for iphoneExportImageToAlbum
Added support for heading tracking (digital compass)
Added support for iphoneApplicationIdentifier
Fixed bug in simulator causing paths beginning with '//' not to be 
redirected correctly (9438)
Fixed bug with iphonePick not scrolling to index on iPad (9461)
Fixed startup crash on iOS 3.1.3 devices.

4.6.1-rc-1 (2011-04-19) MW Added support for pdf printing
Fixed bug with dbSqlite returning incorrect data in some cases

4.6.1-gm-1 (2011-04-25) MW Fixed bug with mouseLoc being vertically displaced.
Fixed bug with delayed processing of touches to native scroller
Fixed bug with mouseUp being sent instead of mouseRelease on 
a cancelled touch.
Fixed bug with closeStack/closeCard message not called after 
shutdown.

4.6.1-gm-2 (2011-05-04) MW Fixed bug causing app to crash on exit if global variables used 
(9526)

4.6.2-dp-1 (2011-06-01) MW Added support for iphoneSetKeyboardType to ask dialog (9556)
Fixed bug causing url operations to fail after pick list display 
(9529)
Fixed bug with incorrect return value from url chunk when an 
error occurs (9549)
Fixed crash on fetching text property of UITextField if not 
previously initialized (9564)

4.6.1-rc-1 (2011-06-08) MW No changes.
4.6.2-rc-2 (2011-06-15) MW No changes.
4.6.2-gm-1 (2011-06-20) MW Fixed bug with reversal of red/blue in bitmap effects.
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4.6.3-dp-1 (2011-07-01) MM No changes.
4.6.3-dp-2 (2011-07-11) MM Fixed bug with splash landscape screens  jumping to protrait 

during app initialisation (9601).
4.6.3-dp-3 (2011-07-13) MM No changes.
4.6.3-rc-1 (2011-07-15) MM No changes.
4.6.3-gm-1 (2011-07-19) MM No changes.
4.6.3-gm-2 (2011-07-26) MM No changes.
4.6.4-dp-1 (2011-08-10) MM Updated iphonePick to support multi-column pickers.
4.6.4-dp-2 (2011-08-16) MM Added support for the mouse function.

Added support for multiline native input control.
4.6.4-dp-3 (2011-08-22) MM Added support for the date picker.

Altered the engines interaction with the main iOS run loop.
Fixed redraw issue on iOS 5 (bug 9639)

4.6.4-rc-1 (2011-08-26) MM Added support for the networkInterfaces property.
Fixed bug with import snapshot producing flipped images 
(9692).

4.6.4-rc-2 (2011-09-02) MM No changes.
4.6.4-gm-1 (2011-09-06) MM Fixed bug with iphoneClearTouches being called from touch 

handlers (9683).
Fixed bug with the initial value not being scrolled to with iPad 
pickers (9708).

4.6.4-gm-2 (2011-09-09) MM No changes
4.6.4-gm-3 (2011-09-15) MM No changes.
5.0.0-dp-1 (2011-09-16) MM The graphics architecture has been reworked with support for 

software, CoreGraphics and OpenGL accelerated rendering 
modes added.  See the main release notes for full details.
Support for iOS 3 dropped.

5.0.0-dp-2 (2011-09-22) MM Fixed bug with native scroller's not passing through touch 
messages (9738).
Fixed rendering issue with iOS 5 ask dialogs (9730).
Added support for iOS 5 simulator.
Updated builds to include both ARM v6 and ARM v7 
architectures.

5.0.0-dp-3 (2011-09-29) MM Fixed bug - lockText property does not interact with keyboard 
activation correctly on iOS (9610).
Fixed bug - nested controls don't receive touch messages (9620).
Fixed bug - transition from fullscreen videos back to LiveCode 
causes jump (9466).
Fixed bug - initial splash screen wrong when iPad face-up 
(9601).
Fixed bug - visual effect in rect (hide/show) doesn't work on iOS.
Fixed bug - incorrect view used when setting parameters on 
switch to OpenGL/UIKit type views (including contentScale - 
causes OpenGL view to not respect UseDevRes).
Added new function “iphoneSetRedrawInterval”

5.0.0-dp-4 (2011-10-03) MM Fixed bug – text shifted down a pixel relative to 4.6.4 (9760).
Fixed bug – native scrollers block all touch messages after 
cancelling a touch (9775).
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5.0.0-rc-1 (2011-10-06) MM Fixed bug - move does not work correctly on iOS (9781).
Fixed bug iPhonePick returns obscure characters (9773).
Engine is now built using iOS 5.0 SDK.
Update iPhonPick and iPhoneDate so that the display of 
“Cancel” and “Done” buttons can be controlled.

5.0.0-rc-2 (2011-10-08) MM Fixed bug - crash when using iOS 5 simulator on Lion.
Fixed bug - allowed orientations not set to plist settings on 
startup on iPad.
Fixed bug - black screen on iOS5 in opengl compositor mode.

5.0.0-gm-1 (2011-10-10) MM Fixed bug - screen updates disabled during auto rotation when 
redraw interval in use (causes black screen) (9780).
Fixed bug - visual effects don't take into account the device res 
(9796).

5.0.1-dp-1 (2011-10-19) MM Fixed bug - visual effects between stacks do not ensure target 
stack is resized correctly before playing on mobile.
Fixed bug - rendering artefacts when in non-retina mode on 
retina device.
Fixed bug - crash when matching unlock screen with effect with 
'lock screen'. (9802).
Fixed bug - visual effects play very fast. (9809).
Fixed bug - visual effects not working when transitioning from 
card to stack (9811).
Fixed bug - crash when setting redraw interval back to zero 
(9814).
Fixed bug - export snapshot produces inverted images in 
landscape mode. (9816).
Fixed bug - make sure launch image is displayed with the correct 
orientation (9823).

5.0.1-dp-2 (2011-10-26) MM Implemented activity indicator.
Implemented media picker.
Updated play command to support playback of files in iPod 
library.
Fixed bug - translucent status bar style causes stack to shift up 
incorrectly on iPad.
Fixed bug - PDF printing fails on iOS4 (9827).
Fixed bug - area visual effects where either top or left of rect is 
negative cause incorrect rendering on iOS (9831).

5.0.1-dp-3 (2011-11-07) MM Fixed bug - checking for the sound is done causes apps to crash 
(9835).
Fixed bug – date picker does not allow the selection of dates 
before 1970 (9848).
Updated native browser control to send new message 
“browserLoadRequested”.

5.0.1-rc-1 (2011-11-16) MM No changes.
5.0.1-rc-2 (2011-11-21) MM Fixed bug – no upper limit on volume (9873).

Fixed bug – play command crashes after several uses (9862).
Fixed bug – crash when using visual effects and 
iphoneSetRedrawInterval.
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5.0.1-gm-1 (2011-11-23) MM No changes.
5.0.2-dp-1 (2011-11-25) MM No changes.
5.0.2-rc-1 (2011-12-02) MM No changes.
5.0.2-gm-1 (2011-12-12) MM Fixed bug – showController ignored by play video on second 

running on iOS 5.0 (9892).
Fixed bug – mobilePickPhoto swaps between front and rear 
cameras on iOS 5.0 (9902).

5.5.0-dp-1 (2011-02-13) MM Re-factored sensor support.
Added support for rotation sensor.
Added support for local notifications.
Added support for push notifications.
Added support for custom URL schemes.
Added support for text message composition.
Added support for vibration.
Added support for busy indicators.
Fixed bug - crash when printing to pdf with drop shadows 
(9888).
Fixed bug - scroller limited to 16-bit content rect (9899).
Fixed bug – rotate command causes crash (9909).
Fixed bug – RTF text does not display correctly (9974).
Fixed bug – right wrapping margins incorrect (9982).
Fixed bug – play sound on channel next has delay (9916).
Fixed bug – play command crashes when passed multiple items 
(9983).

5.5.0-dp-2 (2011-02-27) MM Added support for in-app advertising.
Fixed bug - groups do not receive mouseDown messages after 
they are first shown (10018).
Fixed bug - after a visual effect mouse messages pass through a 
group (9868).
Fixed bug - calling mobileSetAllowedOrientations doesn't force 
the interface orientation (10020).
Fixed bug - pickers do not return 0 on cancel (9999).

5.5.0-dp-3 (2012-03-09) MM Fixed bug - selected item in pick list on iPad returns 0 (10036).
Fixed bug - pushNotificationReceived skipped on application 
launch (10042).
Fixed bug - the sound stores the path to files that do not exist 
instead of done (10021).
Fixed bug - iphoneSetStatusBarStyle "opaque" changes to back 
to default status bar (10033).
Fixed bug - activity indicator placed in incorrect location on 
retina display (9957).
Fixed bug - junk graphic names in simulator (10038).
Fixed bug - screen black when orientation changed (10048).
Fixed bug - clicking "Ok" in an iOS ask dialog with no text 
entered returns "Cancel" (9970).
Fixed bug - Ask dialog does not provide editable default value 
(9930).

5.5.0-rc-1 (2012-03-14) MM Removed support for in app advertising.

91



Revision 97 – 2013-05-29

Fixed bug - push Notification Crashes in certain circumstances 
(10076).
Fixed bug - data returned from ask dialog is prepended with a 
space character (10084).

5.5.0-rc-2 (2012-03-16) MM Fixed bug - not specifying a type crashes mobilePickDate.
5.5.0-gm-1 (2012-03-20) MM Fixed bug – app crash on iOS 5.1 using play command (10104).
5.5.0-gm-2 (2012-03-23) MM Fixed bug - play command crashes on iOS devices running 4.2 or 

earlier.
Fixed bug - bold style doesn't alway apply (10116).
Fixed bug - setting UseDeviceResolution doesn't force a 
complete screen redraw.
Fixed bug – single iPad pickers do not return the correct values.

5.5.0-gm-3 (2012-03-26) MM No changes.
5.5.1-dp-1 (2012-04-05) MM Re-instated support for in-app advertising.

Fixed bug – graphic effects can cause crashes (10146).
5.5.1-dp-1 (2012-04-05) MM Fixed bug - picker is not positioned correctly on retina devices 

(10139).
Fixed bug - crash when displaying picker in openField from first 
field in stack (10187).
Fixed bug – photos picked from camera always in landscape 
orientation (10192).
Fixed bug – mobileAdCreate no longer requires all parameters to 
be specified.
Updated ad support to use latest inneractive APIs.

5.5.1-rc-1 (2012-05-10) MM Added support for address book access.
Updated ad support to use latest inneractive APIs.

5.5.1-rc-2 (2012-05-11) MM Added phonehome, phonework and phoneotherfax for contact 
support.

5.5.1-rc-3 (2012-06-01) MM Updated the default compositor settings used by the 
acceleratedRendering for retina iPads.
Fixed bug  - mobile controls can remain in list after deleted 
(10203).
Fixed bug – get URL does not return error message  in result and 
error page delivered by server (10243).
Fixed bug -  calling mobileshowContact directly after 
mobilePickContact does not show the contact (10213).
Fixed bug - iOS Apps do not run on iPhone 3 with iOS 4.2.1 
(10224).
Fixed bug – crash on rotating device after deleting an ad.
Fixed bug – adLoaded message no longer being sent.

5.5.1-rc-4 (2012-06-15) MM Fixed bug – exit on startup when running on iOS 6.0 devices.
Fixed bug - javascript execution in UIWebView doesn't work 
correctly in iOS 5 (10013).
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5.5.1-gm-1 (2012-06-19) MM Updated ad support to use latest inneractive ad APIs.
5.5.2-dp-1 (2012-08-17) MM Reworked engines internal structure to use to co-operative 

threads.
Fixed bug – crash if JavaScript garbage collector is called on 
wrong thread.  Resolves issues related to web views and ads.
Fixed bug - visual effects flicker when redrawInterval set.

5.5.2-rc-1 (2012-08-31) MM Fixed bug – wait in startup process causes hang (10340).
Fixed bug - blendlevel renders incorrectly in OpenGL mode 
(10341).
Fixed bug – images not correctly copied for simulator builds.

5.5.2-rc-2 (2012-09-07) MM Fixed bug – calling put from simulator does not write to console 
on OS 10.8 (10320).

5.5.2-gm-1 (2012-09-11) MM No changes.
5.5.2-gm-2 (2012-09-13) MM No changes.
5.5.3-rc-1 (2012-09-26) MM Fixed bug - picker is not positioned correctly on Retina devices 

(10139).
Fixed bug – print to PDF causes crash (10248).
Fixed bug – temporary folder ends with slash (10279).
Fixed bug – app launched from notifications crash (10391).
Fixed bug – date picker ignores step parameter (10402).
Fixed bug – media picker causes hang (10406).
Added support for new iOS 6.0 rotation handling.
Added two new browser properties canBounce and 
scrollingEnabled (enhancement request 10304).

5.5.3-rc-2 (2012-10-09) MM Fixed bug – shift key is always pressed when keyboard first 
appears (9801).
Fixed bug – picker created by option menu shows stray 
characters (10254).
Fixed bug – delayRequests causes blank pages on iOS 6 (10422).
Fixed bug – portrait native UI dialogs cause landscape only apps 
to exit (10434).
Fixed bug – temporary folder includes stray final character 
(10435).
Fixed bug – busy indicator placed incorrectly if invoked from 
preOpen messages(10441).
Fixed bug – sort international does not work with German text 
(10445).
Fixed bug – incorrect splash screen shown briefly on iPhone 5 
(10448).

5.5.3-rc-3 (2012-10-19) MM Fixed bug – mouseColor is always 0,0,0 (10102).
Fixed bug – device orientation returns incorrect value in 
orientationChanged message (10143).
Fixed bug – return key does not dismiss ask dialog (10175).
Fixed bug – landscape pickers positioned incorrectly on iPhone 5 
(10463).

5.5.3-gm-1 (2012-10-25) MM Fixed bug – ask dialog always returns cancel (10491).
Fixed bug – date picker never returns cancel (10494).
Added support for the effective working screenRect to take into 
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account any keyboard that is visible.
5.5.3-gm-2 (2012-10-31) MM No changes.
5.5.4-gm-1 (2013-02-14) MM Added iOS 6.1 simulator builds.

Updated Armv7 engine to iOS 6.1.
5.5.5-gm-1 (2013-05-21) MM Fixed bug – use of deprecated UDID function prevents 

submission to app store (10895).
5.5.5-gm-2 (2013-05-29) MM No changes.

iOS Deployment Change History

pre-alpha-3 (2010-03-04) MW Initial version.
pre-alpha-4 (2010-03-05) MW Bundle identifier setting no longer lost on reload
pre-alpha-5 (2010-03-11) MW Project settings are no longer lost when adding/removing files
pre-alpha-10 (2010-08-12) MW Added support for configuring SDK roots

Added support for adding folders of files to the app bundle.
pre-release-14 (2010-11-10) MW Added support for ad-hoc and store profiles

Added support for specifying a splash screen
Added support for copying in icons of different resolutions
Added support for plist configuration
Fixed issue with app bundle not being deleted before rebuilding

release-17 (2010-12-01) MW Integrated plugin's functionality into IDE
Simulate start/stop buttons replaced by single menubar 'Simulate' 
button
Deploy button replaced by standard 'Save as Standalone 
Application' action
Plist editor integrated as new Standalone Builder pane
Simulator selection moved to Simulator Version menu item of 
Development menu
SDK configuration moved to 'Mobile Support' pane of 
preferences
Added support UIFileSharingEnabled plist tag
Added ability to choose device type for simulator (iPad/iPhone)
Fixed issue with launch image filenames not being correctly 
computed (and thus failing to copy into the bundle)

release-18 (2010-12-10) MW Added 'Simulate' menu item to menubar
release-19 (2010-12-16) MW Simulator options now remembered as global preferences

Simulator options filtered by minimum version and device family 
in Standalone Settings.
Appropriate warnings and messages added when invalid folders 
are included in the app bundle via 'Copy Files'

release-20 (2010-12-18) MW Improved UI for orientation settings in standalone builder.
Fixed issue with wrong provisioning profile being included when 
more than 9 are installed.
Fixed issue with Simulate getting confused with some stack 
names.

release-21 (2010-12-21) MW MinimumOSVersion now correctly included in plist
release-22 (2011-01-07) MW Added support for DataGrid

Added support for UIPrerenderedIcon plist tag
release-23 (2011-01-14) MW No changes
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release-24 (2011-01-24) MW Added support for including revZip, revXML and dbSqlite 
externals (to be improved later).

release-25 (2011-01-30) MW No changes
release-26 (2011-02-04) MW No changes
release-27 (2011-02-08) MW No changes
release-28 (2011-03-04) MW Added support for iOS 4.3 simulator and device builds

Improved code-signing identity detection and use
release-29 (2011-03-09) MW Added support for including custom fonts (iOS 3.2+)

Added support for including custom externals
Fixed issue with deploying to 4.2 simulator

release-30 (2011-03-13) MW Removed 'Exits on Suspend' option from settings pane and 
forced to always be YES.

release-31 (2011-03-15) MW No changes.
release-32 (2011-03-16) MW Fixed issue where not setting the bundle version explicitly would 

block the Application Loader from uploading an app.
release-33 (2011-03-17) MW Fixed issue with identities containing non-ASCII characters not 

working,
Fixed issue with splash image requiring a relative path in 
educational and personal editions.

release-34 (2011-03-18) MW No changes.
release-35 (2011-03-21) MW No changes.
release-36 (2011-03-21) MW No changes.
release-37 (2011-03-31) MW Added support for fast simulator builds (iOS4.0+)

Added support for mobileStandaloneSaved / 
savingMobileStandalone messages.

4.6.1-dp-2 (2011-04-06) MW Added support for including dbMySQL.
4.6.1-rc-1 (2011-04-19) MW Added support for including PDF Printer.
4.6.1-gm-1 (2011-04-25) MW No changes.
4.6.1-gm-2 (2011-05-04) MW No changes.
4.6.2-dp-1 (2011-06-01) MW Implemented new external build mechanism for device builds.
4.6.2-rc-1 (2011-06-08) MW No changes.
4.6.2-rc-2 (2011-06-15) MW No changes.
4.6.2-gm-1 (2011-06-20) MW No changes.
4.6.3-dp-1 (2011-07-01) MM No changes.
4.6.3-dp-2 (2011-07-11) MM Added support for UTF-8 app names.
4.6.3-dp-3 (2011-07-13) MM No changes.
4.6.3-rc-1 (2011-07-15) MM No changes.
4.6.3-gm-1 (2011-07-19) MM No changes.
4.6.3-gm-2 (2011-07-26) MM Updated SDK version checking to be more permissive, allowing 

for building with Lion and newer versions of Xcode.
4.6.4-dp-1 (2011-08-10) MM No changes.
4.6.4-dp-2 (2011-08-16) MM No changes.
4.6.4-dp-3 (2011-08-22) MM No changes.
4.6.4-rc-1 (2011-08-26) MM No changes.
4.6.4-rc-2 (2011-09-02) MM Fixed bug with with building device externals.
4.6.4-gm-1 (2011-09-06) MM No changes
4.6.4-gm-2 (2011-09-09) MM No changes
4.6.4-gm-3 (2011-09-15) MM No changes.
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5.0.0-dp-1 (2011-09-16) MM No changes.
5.0.0-dp-2 (2011-09-22) MM Added support for ARM v6 and ARM v7 architectures.

Added support for iOS 5 simulator.
5.0.0-dp-3 (2011-09-29) MM Updated standalone builder with new orientation settings.

Updated standalone builder to allow the specifying of icons and 
splash screens of particular sizes.
Updated standalone builder to allow the choice of build type 
(Arm v6, Arm v7, Universal).

5.0.0-dp-4 (2011-10-03) MM Fixed bug with iPad icons not being named incorrectly.
Fixed bug with build type setting being ignored.

5.0.0-rc-1 (2011-10-06) MM Tightened up layout of standalone builder pane so it now fits on 
smaller monitors.

5.0.0-rc-2 (2011-10-08) MM No changes.
5.0.0-gm-1 (2011-10-10) MM No changes.
5.0.1-dp-1 (2011-10-19) MM No changes.
5.0.1-dp-2 (2011-10-26) MM Updated template plists to remove deprecated entry 

CFBundleIcon.
5.0.1-dp-3 (2011-11-07) MM No changes.
5.0.1-rc-1 (2011-11-16) MM Fixed bug with device builds getting confused by externals built 

for 5.0 simulator.
5.0.1-rc-2 (2011-11-21) MM No changes.
5.0.1-gm-1 (2011-11-23) MM No changes.
5.0.2-dp-1 (2011-11-25) MM No changes.
5.0.2-rc-1 (2011-12-02) MM No changes.
5.0.2-gm-1 (2011-12-12) MM No changes.
5.5.0-dp-1 (2012-02-13) MM Updated Standalone Builder to include required entries for push 

notifications and custom URL schemes.
5.5.0-dp-2 (2012-02-27) MM Updated signing process to include the required entitlements for 

push notifications.
5.5.0-dp-3 (2012-03-09) MM Fixed bug – OpenGL settings are not preserved in Standalone 

Builder (10060).
Added support for Xcode 4.3.

5.5.0-rc-1 (2012-03-14) MM No changes.
5.5.0-rc-2 (2012-03-16) MM No changes.
5.5.0-gm-1 (2012-03-20) MM No changes.
5.5.0-gm-2 (2012-03-23) MM Updated Standalone builder to add support for iOS 5.1.
5.5.0-gm-3 (2012-03-26) MM Fixed bug – standalone application builder fails during 

initialization process.
Fixed bug – standalones do not include copied files.
Fixed bug – hi-res iPad icon not displayed.

5.5.1-dp-1 (2012-04-05) MM No changes.
5.5.1-dp-2 (2012-05-04) MM Fixed bug – initial iPad orientation now defaults to portrait.
5.5.1-rc-1 (2012-05-10) MM No changes.
5.5.1-rc-2 (2012-05-11) MM Fixed typo in Preferences stack preventing the setting of the path 

to the iOS 4.0 SDK.
5.5.1-rc-3 (2012-06-01) MM No changes.
5.5.1-rc-4 (2012-06-15) MM Added support for deploying to iOS 6.0 simulator.
5.5.1-gm-1 (2012-06-19) MM Included files missing iOS 6.0 simulator files.
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5.5.2-dp-1 (2012-08-17) MM Added support for new zip format externals.
5.5.2-rc-1 (2012-08-31) MM No changes.
5.5.2-rc-2 (2012-09-07) MM No changes.
5.5.2-gm-1 (2012-09-11) MM No changes.
5.5.2-gm-2 (2012-09-13) MM No changes.
5.5.3-rc-1 (2012-09-26) MM Removed support for 4.0, 4.1 and 4.3 simulators.

Updated mobile preferences to support multiple Xcode installs.
Updated device builds to use the iOS 6.0 SDK where possible.
Added support for 4 inch displays.

5.5.3-rc-2 (2012-10-09) MM Fixed bug – pList does not include iOS 6 SDK entries (10428).
5.5.3-rc-3 (2012-10-19) MM No changes.
5.5.3-gm-1 (2012-10-25) MM No changes.
5.5.3-gm-2 (2012-10-31) MM No changes.
5.5.4-gm-1 (2013-02-14) MM Added support for iOS 6.1 device and simulator builds.
5.5.5-gm-1 (2013-05-21) MM No changes.
5.5.5-gm-2 (2013-05-29) MM No changes.

Document History

Revision 1 (2010-03-04) MW Initial version.
Revision 2 (2010-03-05) MW Added documentation for new iphonePhotoPick parameters
Revision 3 (2010-03-11) MW Improved consistency of syntax specifications and use

Refined documentation for touch events
Added new section about mouse events
Added new section on restrictions to dynamic features
Restructured headings to make sure PDF index works

Revision 4 (2010-03-18) MW Added section on orientation handling
Added section on location handling
Refined statements about the mouseLoc
Refined description of touch handling with regard to hit-testing
Clarified support for dynamic chunks
Added section on email composition
Added section file handling
Clarified blocking behavior of non-file url's

Revision 5 (2010-03-29) MW Added section on system alerts
Added section on sound support
Added section on url launching
Added section on font querying
Added description of engine parameter to specialFolderPath

Revision 6 (2010-04-12) MW Revised setting up your system with regard iPad support
Added section on hardware and system version querying

Revision 7 (2010-08-12) MW Revising initial sections to include details of SDK configuration 
and requirements.
Revised 'Sound file support' section to include 'the sound'.
Added 'Video file support' section.
Revised 'Non-file url' section to include 'libUrlDownloadToFile'
Revised 'The revMobile Plugin' section to include changes to UI.
Revised 'Projects and Files' section to include details about 
adding folders.
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Revision 8 (2010-09-16) MW Rebranded from revMobile to iOS Deployment
Rebranded from rev* to LiveCode
Removed section on dynamic language features as no longer 
relevant.

Revision 9 (2010-11-10) MW Various edits to improve language.
Expanded section on url commands
Added section on visual effects
Added section on status bar configuration
Revised 'The Deployment Plugin' section
Revised the non-test deployment section
Added a section on the plist editor
Added a section on launch images
Added a section on splash images

Revision 10 (2010-12-01) MW Rewrote and reorganised initial sections to reflect new 
integration into the IDE.
Rewrote section on orientation handling.
Added section on native controls and further sub-sections on 
browser and scroller controls.
Added section of locale and system language query support.
Revised the play video section.

Revision 11 (2010-12-04) MW Added section on 'Engine Version'
Revision 12 (2010-12-10) MW Corrected iphoneControlDestroy to iphoneControlDelete

Corrected declerationRate to decelerationRate
Corrected description of flashScrollIndicators
Added a section on common control properties and actions
Added section on out-of-bounds group scrolling
Added section on noteworthy changes
Updated browser control section
Updated movie playback section
Updated non-file URL section
Updated orientation handling section to describe how to lock 
orientations to a specific set on startup

Revision 13 (2010-12-16) MW Correct description of 'the sound'
Added section on 'copy files restrictions'
Added section on 'encryption compliance'
Updated keyboard section with new messages

Revision 14 (2010-12-19) MW Revised section on orientation handling
Added a note about URL format to non-file URL access section
Added note about nesting to ask/answer dialog section
Added a note about 'go in window' to stacks/windows section
Added a note about changes to out-of-bounds scrolling
Updated keyboard section with new commands
Updated out-of-bounds scroll section with details of new 
properties.

Revision 15 (2010-12-22) MW Added section on multi-channel sound support.
Updated non-file URL access with details of the httpHeaders.

Revision 16 (2011-01-07) MW Updated video playback section to describe how to loop
Updated 'what doesn't work' to mention painting tools
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Revision 17 (2011-01-14) MW Updated browser control section with new properties
Updated resolution handling section to mention 
iphoneDeviceScale()

Revision 18 (2011-01-24) MW Added section of configuring the idle timer.
Added section on externals.
Updated section on what does/what doesn't work to include 
externals correctly.

Revision 19 (2011-01-30) MW Added a section on snapshot capabilities
Added a section on querying camera capabilities
Added a section on handling pending interactions
Updated native controls section to mention control listing and 
naming
Updated section on visual effects to mention new flip behavior

Release 20 (2011-02-04) MW Corrected description of mediaPlaybackRequiresUserAction
Release 21 (2011-02-08) MW No changes
Release 22 (2011-03-04) MW Added mention of iphoneSystemIdentifer() to hardware querying 

section.
Added reference to 4.3 SDK in installation section.

Release 23 (2011-03-09) MW Added section on native 'player' control
Added section on native 'input' control
Added section on network reachability tracking
Added section on including custom fonts
Added section on including custom externals
Updated section on video playback to mention playing sections 
of video
Updated section on multi-channel sound to mention pause, 
resume, status and preparing.

Revision 24 (2011-03-13) MW Updated section on email composition
Updated noteworthy changes section
Replaced all curly double quotes with plain double quotes
Corrected borderStyle 'round' to be 'rounded'

Revision 25 (2011-03-15) MW Improved notes on iOS version compatibility of native player 
control.

Revision 26 (2011-03-16) MW Clarified iphonePick command behavior.
Revision 27 (2011-03-17) MW Corrected iphoneComposeMail syntax.
Revision 28 (2011-03-18) MW Corrected iphoneComposeEmail to iphoneComposeMail

Corrected content to filename in native player control.
Updated section on iphonePickPhoto to mention iPad behavior.
Updated section on native input control to mention changes.
Updated section on native player control to mention changes.
Clarified that iphonePick indices are 1-based.
Changed support for native player control to be iOS 4.0+.

Revision 29 (2011-03-21) MW Updated screenshots as appropriate.
Revision 30 (2011-03-25) MW No changes.
Revision 31 (2011-03-31) MW Updated section on iphonePick to mention new behavior.

Updated section on specialFolderPath to mention library.
Added section on fast simulator builds.
Added section on standalone saving messages.
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Revision 32 (2011-04-06) MW Updated section on iphonePick to mention style parameter.
Updated section on engine version to mention integration.
Updated section on iphoneUseDeviceResolution to mention 
native control support.
Updated section on location tracking to incorporate support for 
heading tracking.
Updated section on photo picking to mention support for saving 
images to albums.
Updated section on hardware query support to be about runtime 
environment and to include iphoneApplicationIdentifier.

Revision 33 (2011-04-19) MW No changes.
Revision 34 (2011-04-25) MW No changes.
Revision 35 (2011-05-04) MW No changes.
Revision 36 (2011-06-01) MW Updated section on 'Choosing an SDK' to reflect need for iOS 

4.3 SDK for device builds.
Updated section on ask dialog to mention use of keyboard type.

Revision 37 (2011-06-08) MW No changes.
Revision 38 (2011-06-15) MW No changes.
Revision 39 (2011-06-20) MW No changes.
Revision 40 (2011-07-01) MM No changes.
Revision 41 (2011-07-11) MM No changes.
Revision 42 (2011-07-13) MM No changes.
Revision 43 (2011-07-15) MM No changes.
Revision 44 (2011-07-19) MM No changes.
Revision 45 (2011-07-26) MM No changes.
Revision 46 (2011-08-10) MM Updated section Modal Pick-Wheel support.
Revision 47 (2011-08-16) MM Added section Multi-line Input Control – UITextView.
Revision 48 (2011-08-22) MM Added section Date picker support.
Revision 49 (2011-08-26) MM No changes.
Revision 50 (2011-09-02) MM No changes.
Revision 51 (2011-09-06) MM No changes.
Revision 52 (2011-09-09) MM No changes.
Revision 53 (2011-09-15) MM No changes.
Revision 54 (2011-09-16) MM Updated section 'Choosing an SDK'.
Revision 55 (2011-09-22) MM Updated section 'Choosing an SDK'.

Updated section 'Configuring LiveCode'.
Revision 56 (2011-09-29) MM Updated section “Setting plist options”.

Added section “Managing redraws”.
Revision 57 (2011-10-03) MM No changes.
Revision 58 (2011-10-06) MM Updated section 'Choosing an SDK'.

Updated section 'Modal Pick-Wheel Support'.
Updated section 'Date Picker Support'.
Added section 'In App Purchasing'.

Revision 59 (2011-10-08) MM No changes.
Revision 60 (2011-10-10) MM No changes.
Revision 61 (2011-10-19) MM No changes.
Revision 62 (2011-10-26) MM Added section “Media picker support”

Added section “Activity indicator”
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Updated section “Basic sound playback support”.
Revision 63 (2011-11-07) MM Updated section “Media picker support”.

Updated section “Browser control -UIWebView”.
Revision 64 (2011-11-16) MM No changes.
Revision 65 (2011-11-21) MM No changes.
Revision 66 (2011-11-23) MM No changes.
Revision 67 (2011-11-25) MM No changes.
Revision 68 (2011-12-02) MM Fixed documentation error in section “Video playback support”
Revision 69 (2011-12-12) MM No changes.
Revision 70 (2012-02-13) MM Updated section “Accelerometer support”.

Updated section “Location and heading tracking”.
Added section “Local notifications”.
Added section “Push notifications”
Added section “Application icon badge support”.
Added section “Text messaging”.
Added section “Busy indicator”.
Added section “Vibration support”.
Added section “Sensor tracking”.

Revision 71 (2012-02-27) MM Added section “In App Advertising”.
Updated section “Local Notifications”.

Revision 72 (2012-03-09) MM Updated section “Choosing an SDK”.
Revision 73 (2012-03-14) MM Removed section “In App Advertising”
Revision 74 (2012-03-16) MM No changes.
Revision 75 (2012-03-20) MM No changes.
Revision 76 (2012-03-23) MM Updated section “Choosing an SDK”.
Revision 77(2012-03-26) MM No changes.
Revision 78(2012-04-05) MM Added section “In App Advertising”.
Revision 79(2012-05-04) MM Updated section “In App Advertising”.

Added section “File Attributes”.
Revision 80(2012-05-10) MM Added section “Contact Access”.
Revision 81(2012-05-10) MM Updated section “Contact Access”.
Revision 82(2012-06-01) MM Updated section “Contact Access”.
Revision 83(2012-06-15) MM No changes.
Revision 84(2012-06-19) MM Updated section “In App Advertising”.
Revision 85(2012-08-17) MM Updated section “Noteworthy Changes”.
Revision 86(2012-08-31) MM No changes.
Revision 87(2012-09-07) MM No changes.
Revision 88(2012-09-11) MM No changes.
Revision 89(2012-09-13) MM No changes.
Revision 90(2012-09-26) MM Updated section “Browser Control”.

Updated section “Choosing an SDK”.
Updated section “Configuring LiveCode”.
Updated section “Noteworthy Changes”.

Revision 91(2012-10-09) MM Updated section “Resolution Handling”.
Added section “Audio session support”.

Revision 92(2012-10-19) MM Updated section “System Dialogs – answer and ask”.
Revision 93(2012-10-25) MM Updated section “Resolution Handling”.
Revision 94(2012-10-31) MM No changes.
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Revision 95(2013-02-14) MM Updated section “Choosing an SDK”.
Updated section “Configuring LiveCode”.

Revision 96(2013-05-21) MM No changes.
Revision 97(2013-05-29) MM No changes.
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